
Serie PROFI**TEST MASTER**PROFI**TEST M**BASE+, **M**TECH+, **M**PRO, **M**XTRA, **SECULIFE IP**Prüfgeräte IEC 60364 / DIN VDE 0100

3-349-647-01

Legende

Prüfgerät und Adpater

- 1 Bedienterminal mit Tasten und Anzeigefeld mit Rasterung für optimalen Blickwinkel
- 2 Befestigungsöse zur Aufnahme des Tragegurts
- 3 Funktionsdrehschalter
- 4 Messadapter (2-polig)
- 5 Steckereinsatz (länderspezifisch)
- 6 Prüfstecker (mit Befestigungsring)
- 7 Krokodilklemme (aufsteckbar)
- 8 Prüfspitzen
- 9 Taste ▼ ON/START *
- Taste I $I\Delta_N$ /Kompens./Z_{OFFSET}
- 11 Kontaktflächen für Fingerkontakt
- 12 Halterung für Prüfstecker
- 13 Sicherungen
- 14 Klemme für Prüfspitzen (8)

Anschlüsse Stromzange, Sonde, Ableitstrommessadapter PRO-AB

- 15 Stromzange Anschluss 1
- 16 Stromzange Anschluss 2
- Sondenanschluss

Schnittstellen, Ladegerätanschluss

- 18 Bluetooth®
- 19 USB-Slave für PC-Anschluss
- 20 RS232 für Anschluss von Barcode- oder RFID-Lesegerät
- Anschluss für Ladegerät Z502P Achtung! Bei Anschluss des Ladegerätes dürfen keine Batterien eingesetzt sein.
- 22 Akkufachdeckel (Fach für Akkus sowie Ersatzsicherungen)

Einschalten nur über Taste am Gerät

Erklärungen zu den Bedien- und Anzeigeelementen siehe Kap. 17

Akkukontrollanzeige

BAT Akku voll

BAT

Akku schwach

BAT Akku OK

BAT

Akku (fast) leer U < 8 V

Speicherbelegungsanzeige

Speicher voll > Daten zum PC übertragen

MEM Speicher halbvoll

Anschlusstest – Netzanschlusskontrolle (→ Kap. 18)

L und N vertauscht

Diese Bedienungsanleitung beschreibt ein Prüfgerät der Softwareversion SW-VERSION (SW1) 01.16.00.

Übersicht über Geräteeinstellungen und Messfunktionen

Schalter-	Pikto-	Geräteeinst	
stellung Beschrei-	gramm	Messfunktio	onen
bung ab			
SETUP	пло	SETTING	Helligkeit, Kontrast, Uhrzeit/Datum, Bluetooth®
	Ył	©⊕₩	Sprache (D, GB, P), Profile (ETC, PS3, PC.doc)
	0 0		Werkseinstellungen
		1158118	< Test: LED, LCD, Signalton
Seite 8		≫≪ব	Drehschalterabgleich, Akkutest >
Messunge	en bei Netz	spannung	
U		Einphasenn	nessung U _{L-N-PE}
	Ψ.	UL-N	Spannung zwischen L und N
		U L-PE	Spannung zwischen L und PE
		UN-PE US-PE	Spannung zwischen N und PE Spannung zwischen Sonde und PE
		f	Frequenz
		-	messung U _{3~}
		U L3-L1	Spannung zwischen L3 und L1
		U L1-L2	Spannung zwischen L1 und L2
		U L2-L3	Spannung zwischen L2 und L3
Caita 10		f	Frequenz
Seite 16	n unton	<u> </u>	Drehfeldrichtung
wird bei alle stehenden M		f/f _N	Netzspannung / Netznennspannung Netzfreguenz / Netznennfreguenz
eingeblende		' ' 'N	
IΔN		UI∆N	Berührungsspannung
Seite 18	∞.8	ta	Auslösezeit
		RE	Erdungswiderstand Berührungsspannung
lF⊿	 ⊗8	UIΔN IΔ	Berührungsspannung Fehlerstrom
Seite 20		RE .	Erdungswiderstand
ZL-PE	-	ZL-PE	Schleifenimpedanz
0 11 00		IK	Kurzschlussstrom
Seite 26		ZL-N	Netzimpedanz
ZL-IN		IK	Kurzschlussstrom
Seite 28		IIX	Nul230Hu333H0H
RE	RE	2-P ==16	2-polige Messung (Erdschleife) R E(L-PE)
	— <u>—</u>	(2-P) ⊄ ⊒‡ (
	mains ~		W
	6220	3-P)15-+7	3-polige Messung (2-Pol mit Sonde)
		SELIB-P	
Seite 30		UE	Erderspannung (nur mit Sonde/Zange)
		nungsfreien (
RE	- E -	(3-P):=D (3-polige Messung
(MPRO)	<u>÷</u>	(4-P):= □	4-polige Messung
(MXTRA)	mains \sim	SEL 4-P 🙀	selektive Messung mit Zangenstromsensor
	220	E-MIM Ma	2-Zangen-Messung (Erdschleifenwiderstand)
Seite 37		(3E) [4] 4] 4	ρΕ spezifischer Erdwiderstand
RLO	F	R LO	Niederohmwiderstand mit Umpolung
	RLO ≄⊟⊸s	RLO+, RLO-	Niederohmwiderstand einpolig
Seite 47		ROFFSET	Offsetwiderstand
RIS0	RISO	RISO	Isolationswiderstand Frankleitwiderstand
	ı———	RE(ISO)	Erdableitwiderstand Spannung an den Prüfspitzen
		U ISO	Prüfspannung
Seite 44		2.00	Rampe: Ansprech-/Durchbruchspannung
SENSOR	=0 33	I _{L/AMP}	Fehler-, Ableit- bzw. Leckströme
	1_0	T/RF	Temperatur/Feuchte (in Vorbereitung)
Seite 50		All	Spannungefall Massung
EXTRA	@ ⊿U(ZLH) அ ^{ட்ட} ZsT	∆U ZST	Spannungsfall-Messung Standortisolationsimpedanz
	Ek⊮h-Test	kWh-Test	Zähleranlaufprüfung mit Schutzkontaktstecker
	[-@n	L 1)	Ableitstrommessung mit Adapter Z502S
	imin imin imin imin imin imin imin imin	IMD ²⁾ Ures ²⁾	Isolationswächter prüfen (Insulation Monitoring Device) Restspannungsprüfung
	RCD#: ta+la	$\tan + \Delta l^{(2)}$	intelligente Rampe
	RCM=14	RCM ²⁾	RCM (Residual Current Monitoring)
Seite 51	PRCD (68)	e-mobility ³⁾ PRCD ²⁾	Elektrofahrzeuge an E-Ladesäulen (IEC 61851) Prüfung von PRCDs Typ S und K
AUTO		י עטוו י	Automatische Prüfabläufe
Seite 64			
		IP ²⁾ nur MXT	RA ³⁾ nur MTECH+ & MXTRA

1) nur **MXTRA** & **SECULIFE IP** 2) nur **MXTRA** 3) nur **MTECH+** & **MXTRA**

1	Lieferumfang 5	10.2	Erdungswiderstandsmessung – batteriebetrieben "Akkubetrieb"	
2	Anwendung 5	10.3	(nur MPRO & MXTRA)	
_ 2.1	Anwendung der Kabelsätze bzw. Prüfspitzen5	10.5	ter oder länderspezifischem Stecker (Schuko) ohne Sonde 3	
2.2	Übersicht Leistungsumfang	10.4	Erdungswiderstandsmessung netzbetrieben – 3-Pol-Messung: 2	
	der Gerätevarianten PROFITEST MASTER & SECULIFE IP6	10.4	Pol-Adapter mit Sonde	
		10.5	Erdungswiderstandsmessung netzbetrieben – Messen der Erde	
3	Sicherheitsmerkmale und -vorkehrungen 6	10.0	spannung (Funktion U_F)	
		10.6	Erdungswiderstandsmessung netzbetrieben – Selektive Erdungs	
4	Inbetriebnahme 7		widerstandsmessung mit Zangenstromsensor als Zubehör 3	
4.1	Erstinbetriebnahme	10.7	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" -	
4.2	Akku-Pack einsetzen bzw. austauschen		3-polig (nur MPRO & MXTRA)	
4.3	Gerät ein-/ausschalten	10.8	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" –	
4.4 4.5	Akkutest		4-polig (nur MPRO & MXTRA)3	8
4.5 4.6	Akku-Pack im Prüfgerät aufladen7 Geräteeinstellungen8	10.9	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" -	_
4.0	derateenistenungeno		selektiv (4-polig) mit Zangenstromsensor sowie Messadapter	
5	Allgemeine Hinweise		PRO-RE als Zubehör (nur MPRO & MXTRA)4	0
5.1	Gerät anschließen13	10.10	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" –	
5.2	Automatische Einstellung, Überwachung und Abschaltung13		Erdschleifenmessung (mit Zangenstromsensor und -wandler sowie	
5.3	Messwertanzeige und Messwertspeicherung13		Messadapter PRO-RE/2 als Zubehör) (nur MPRO & MXTRA) 4	1
5.4	Schutzkontakt-Steckdosen auf richtigen Anschluss prüfen13	10.11	Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb"	
5.5	Hilfefunktion14		– Messung des spezifischen Erdungswiderstands ρ_E	
5.6	Parameter oder Grenzwerte einstellen am Beispiel der RCD-Messung 14		(nur MPRO & MXTRA)4	-2
5.7	Frei einstellbare Parameter oder Grenzwerte15	11	Messen des Isolationswiderstandes 4	1
5.8	Zweipolmessung mit schnellem oder halbautomatischem Pol-	11.1	Allgemein	
	wechsel15	11.2	Sonderfall Erdableitwiderstand (R _{EISO})4	
c	Massan van Channung und Franzons		Condonal Eradolewaloretala (HEISO)	·
6	Messen von Spannung und Frequenz	12	Messen niederohmiger Widerstände bis 200 Ohm	
6.1	1-Phasenmessung		(Schutzleiter und Schutzpotenzialausgleichsleiter) 4	7
6.1.1	Spannung zwischen L und N (U_{L-N}), L und PE (U_{L-PE}) sowie N und PE (U_{N-PE}) bei länderspezifischem Steckereinsatz, z. B. SCHUKO16	12.1	Messung mit konstantem Prüfstrom4	8
6.1.2	Spannung zwischen L – PE, N – PE und L – L bei Anschluss 2-Pol-Adpater16	12.2	Schutzleiterwiderstandsmessung mit Rampenverlauf	
6.2	3-Phasenmessung (verkettete Spannungen) und Drehfeldrichtung 17		- Messung an PRCDs mit stromüberwachtem Schutzleiter mit	
0.2	5-1 maserimessuring (verkettete Spannungen) und Diemetunchtung 17		dem Prüfadapter PROFITEST PRCD als Zubehör4	9
7	Prüfen von Fehlerstrom-Schutzschaltungen (RCD)17	40	Management 9 Occasion als 7 de le 20	
7.1	Messen der (auf Nennfehlerstrom bezogenen) Berührungs-	13	Messungen mit Sensoren als Zubehör5	
	spannung mit ¹ / ₃ des Nennfehlerstromes und Auslöseprüfung mit	13.1	Strommessung mithilfe eines Zangenstromsensors5	ıÜ
	Nennfehlerstrom18	14	Sonderfunktionen – Schalterstellung EXTRA5	1
7.2	Spezielle Prüfungen von Anlagen bzw. RCD-Schutzschaltern20	14.1	Spannungsfall-Messung (bei ZLN) – Funktion ∆U	
7.2.1	Prüfen von Anlagen bzw. RCD-Schutzschaltern	14.2	Messen der Impedanz isolierender Fußböden und Wände	_
	mit ansteigendem Fehlerstrom (Wechselstrom)		(Standortisolationsimpedanz) – Funktion Z _{ST}	:0
	für RCDs vom Typ AC, A/F, B/B+ und EV20	14.3	Prüfung des Zähleranlaufs mit Schutzkontaktstecker	٥١
7.2.2	Prüfen von Anlagen bzw. RCD-Schutzschaltern		- Funktion kWh (nicht SECULIFE IP)5	<u>i</u> 4
	mit ansteigendem Fehlerstrom (Gleichstrom) für RCDs vom Typ B/B+	14.4	Ableitstrommessung mit Ableitstrommessadapter PRO-AB als Zu	J-
7.0.0	und EV (nur MTECH+, MXTRA & SECULIFE IP)		behör – Funktion I _L (nur MXTRA & SECULIFE IP)5	
7.2.3	Prüfen von RCD-Schutzschaltern mit 5 • $I\Delta_N$ 21	14.5	Prüfen von Isolationsüberwachungsgeräten – Funktion IMD	
7.2.4	Prüfen von RCD-Schutzschaltern,		(nur PROFITEST MXTRA & SECULIFE IP)5	
7 2	die für pulsierende Gleichfehlerströme geeignet sind	14.6	Restspannungsprüfung – Funktion Ures (nur MXTRA)5	
7.3 7.3.1	Prüfen spezieller RCD-Schutzschalter	14.7	Intelligente Rampe – Funktion ta+ID (nur PROFITEST MXTRA) 5	
7.3.1 7.3.2	PRCDs mit nichtlinearen Elementen vom Typ PRCD-K22	14.7.1	Anwendung5	9
7.3.3	SRCD, PRCD-S (SCHUKOMAT, SIDOS oder ähnliche)23	14.8	Prüfen von Differenzstrom-Überwachungsgeräten	
7.3.4	RCD-Schalter des Typs G oder R		- Funktion RCM (nur PROFITEST MXTRA)6	
7.4	Prüfen von Fehlerstrom (RCD-) Schutzschaltungen in TN-S-Netzen 25	14.9	Überprüfung der Betriebszustände eines Elektrofahrzeugs an E-	
7.5	Prüfen von Fehlerstrom (RCD-) Schutzschaltungen in IT-Netzen	4440	Ladesäulen nach IEC 61851 (nur MTECH+ & MXTRA)6	
	mit hoher Leitungskapazität (z. B. in Norwegen)25	14.10	Prüfabläufe zur Protokollierung von Fehlersimulationen an PRCDs mit	
	mic nonor zonangonapaznar (z. z. m. normogon) minimininzo	44404	dem Adapter PROFITEST PRCD (nur MXTRA)6	
8	Prüfen der Abschaltbedingungen von Überstrom-Schut-		Auswahl des zu prüfenden PRCDs	
	zeinrichtungen, Messen der Schleifenimpedanz und Ermit-		Parametereinstellungen	
	teln des Kurzschlussstromes (Funktion Z_{I-PF} und I_{K}) 26		3 Prüfablauf PRCD-S (1-phasig) – 11 Prüfschritte	
8.1	Messungen mit Unterdrückung der RCD-Auslösung26	14.10.4	Prüfablauf PRCD-S (3-phasig) – 18 Prüfschritte6	J
8.1.1	Messen mit positiven Halbwellen (MTECH+/MXTRA/SECULIFE IP)27	15	Prüfsequenzen (Automatische Prüfabläufe)	
8.2	Beurteilung der Messwerte27	-	- Funktion AUTO	4
8.3	Einstellungen zur Kurzschlussstrom-Berechnung – Parameter $I_{\mbox{\scriptsize K}}$.28		·	•
•		16	Datenbank 6	6
9	Messen der Netzimpedanz (Funktion Z_{L-N})	16.1	Anlegen von Verteilerstrukturen allgemein6	6
10	Messen des Erdungswiderstandes (Funktion R _F) 30	16.2	Übertragung von Verteilerstrukturen6	6
10 10 1	Frdungswiderstandsmessung – netzhetriehen	16.3	Verteilerstruktur im Prüfgerät anlegen6	6

16.3.1	Strukturerstellung (Beispiel für den Stromkreis)	
16.3.2	Suche von Strukturelementen	
16.4	Datenspeicherung und Protokollierung	
16.4.1	Einsatz von Barcode- und RFID-Lesegeräten	70
17	Bedien- und Anzeigeelemente	.71
18	Signalisierung der LEDs, Netzanschlüsse und Potenzial	
	ferenzen	73
19	Technische Kennwerte	. 82
20	Wartung	87
20.1	Firmwarestand und Kalibrierinfo	
20.2	Akkubetrieb und Ladevorgang	
20.2.1 20.3	Ladevorgang mit dem Ladegerät Z502R	
20.3	Gehäuse	
21	Anhang	22
21.1	Tabellen zur Ermittlung der maximalen bzw. minimalen Anze	
	werte unter Berücksichtigung der maximalen Betriebsmessu	
	cherheit des Gerätes	88
21.2	Bei welchen Werten soll/muss ein RCD eigentlich richtig auslöse	
21.3	Anforderungen an eine Fehlerstromschutzeinrichtung (RCD) Prüfen von elektrischen Maschinen nach DIN EN 60204	90
21.5	- Anwendungen, Grenzwerte	91
21.4	Wiederholungsprüfungen nach DGUV V 3 (bisher BGV A3) – Grenzwerte für elektrische Anlagen und Betriebsmittel	
21.5	Liste der Kurzbezeichnungen und deren Bedeutung	
21.6	Stichwortverzeichnis	
21.7	Literaturliste	
21.7.1	Internetadressen für weiterführende Informationen	95
22	Reparatur- und Ersatzteil-Service	
	Kalibrierzentrum und Mietgeräteservice	. 96
23	Rekalibrierung	. 96
24	Produktsupport	.96
25	Schulung	.96

1 Lieferumfang

- Prüfgerät
- 1 Schutzkontaktstecker-Einsatz (länderspezifisch)
- 1 2-Pol-Messadapter und
 - 1 Leitung zur Erweiterung zum 3-Pol-Adapter (PRO-A3-II)
- 2 Krokodilklemmen
- Umhängegurt
- 1 Kompakt Akku-Pack (Z502H)
- 1 Ladegerät Z502R
- 1 DAkkS-Kalibrierschein
- 1 USB-Schnittstellenkabel
- 1 Kurzbedienungsanleitung
- 1 Beiblatt Sicherheitsinformationen
- Ausführliche Bedienungsanleitung im Internet zum Download unter www.gossenmetrawatt.com

2 Anwendung

Dieses Prüfgerät erfüllt die Anforderungen der geltenden EU-Richtlinien und nationalen Vorschriften. Dies bestätigen wir durch die CE-Kennzeichnung. Die entsprechende Konformitätserklärung kann von GMC-I Messtechnik GmbH angefordert werden. Mit den Mess- und Prüfgeräten der Serie **PROFITEST MASTER** und **SECULIFE IP** können Sie schnell und rationell Schutzmaßnahmen nach DIN VDE 0100-600:2008

(Errichten von Niederspannungsanlagen; Prüfungen – Erstprüfungen)

ÖVE-EN 1 (Österreich), NIV/NIN SEV 1000 (Schweiz) und weiteren länderspezifischen Vorschriften prüfen.

Das mit einem Mikroprozessor ausgestattete Prüfgerät entspricht den Bestimmungen IEC 61557/DIN EN 61557/VDE 0413:

- il 1: Allgemeine Anforderungen
- Teil 2: Isolationswiderstand
- Teil 3: Schleifenwiderstand
- Teil 4: Widerstand von Erdungsleitern, Schutzleitern und Potenzialausgleichsleitern
- Teil 5: Erdungswiderstand
- Teil 6: Wirksamkeit von Fehlerstrom-Schutzeinrichtungen (RCD) in TT-, TN- und IT-Systemen
- Teil 7: Drehfeld
- Teil 10: Elektrische Sicherheit in Niederspannungsnetzen bis AC 1000 V und DC 1500 V – Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen
- Teil 11: Wirksamkeit von Differenzstrom-Überwachungsgeräten (RCMs) Typ A und Typ B in TT-, TN- und IT-Systemen

Das Prüfgerät eignet sich besonders:

- beim Errichten
- beim Inbetriebnehmen
- für Wiederholungsprüfungen
- und bei der Fehlersuche in elektrischen Anlagen.

Alle für ein Abnahmeprotokoll (z. B. des ZVEH) erforderlichen Werte können Sie mit diesem Prüfgerät messen.

Zusätzlich zu dem über einen PC ausdruckbaren, Mess- und Prüfprotokoll lassen sich alle gemessenen Daten archivieren. Dies ist besonders aus Gründen der Produkthaftung sehr wichtig.

Der Anwendungsbereich der Prüfgeräte erstreckt sich auf alle Wechselstrom- und Drehstromnetze bis 230 V / 400 V (300 V / 500 V) Nennspannung und 16 $^2\!/_3$ / 50 / 60 / 200 / 400 Hz Nennfrequenz.

Mit den Prüfgeräten können Sie messen und prüfen:

- Spannung / Frequenz / Drehfeldrichtung
- Schleifenimpedanz / Netzimpedanz
- Fehlerstrom-Schutzeinrichtungen (RCDs)
- Isolationsüberwachungsgeräte (IMDs) (nur MXTRA & SECULIFE IP)
- Differenzstrom-Überwachungsgeräte (RCMs) (nur MXTRA)
- Erdungswiderstand / Erderspannung
- Standortisolationswiderstand / Isolationswiderstand
- Erdableitwiderstand
- Niederohmigen Widerstand (Potenzialausgleich)
- Ableitströme mit Zangenstromwandler
- Restspannungen (nur MXTRA)
- Spannungsfall
- Ableitströme mit Ableitstromadapter
- Zähleranlauf (nicht SECULIFE IP)
- Leitungslänge

Zur Prüfung von elektrischen Maschinen nach DIN EN 60204 siehe Kap. 21.3.

Für Wiederholungsprüfungen nach DGUV Vorschrift 3 (bisher BGV A3) siehe Kap. 21.4.

2.1 Anwendung der Kabelsätze bzw. Prüfspitzen

- Lieferumfang Messadapter 2-polig bzw. 3-polig
- Optionales Zubehör Messadapter 2-polig mit 10 m Kabel: PRO-RLO II (Z501P)
- Optionales Zubehör Kabelsatz KS24 (GTZ3201000R0001)

Nur mit der auf der Prüfspitze der Messleitung aufgesteckten Sicherheitskappe dürfen Sie nach DIN EN 61010-031 in einer Umgebung nach Messkategorie III und IV messen.

Für die Kontaktierung in 4-mm-Buchsen müssen Sie die Sicherheitskappen entfernen, indem Sie mit einem spitzen Gegenstand (z. B. zweite Prüfspitze) den Schnappverschluss der Sicherheitskappe aushebeln.

2.2 Übersicht Leistungsumfang der Gerätevarianten PROFITEST MASTER & SECULIFE IP

der Geratevarianten PROFITE	51 IVI <i>F</i>	491EK	& 5E	JULIFE	: 117
PROFITEST					<u>-</u>
(Artikelnummer)	÷ 60	2	± É	_ <u>e</u>	当会
	3ASE 1520	MPR0 (M520N)	Мтесн+ (M520R)	MXTRA (M520P)	SECUI (M520
	≣≅		Σ≥	ŝξ	8 €
Prüfen von Fehlerstrom-Schutzeinrichtunger	ı (RCDs)			
U _B -Messung ohne FI-Auslösung	✓	1	✓	1	1
Messung der Auslösezeit	✓	/	✓	/	✓
Messung des Auslösestroms I _F	✓	/	✓	/	✓
selektive, SRCDs, PRCDs, Typ G/R	✓	/	1	/	/
allstromsensitive RCDs Typ B, B+, EV/MI		_	/	/	✓
Prüfen von Isolationsüberwachungsgeräten	_	_	_	/	1
(IMDs) Prüfen von Differenzstrom-Überwachungs-					
geräten (RCMs)	_	_	_	✓	_
Prüfung auf N-PE-Vertauschung	/	1	1	1	1
			-		
Messungen der Schleifenimpedanz Z _{L-PE} / Z _I					
Sicherungstabelle für Netze ohne RCD	√	/	1	/	1
ohne RCD-Auslösung, Sicherungstabelle		_	/	/	/
mit 15 mA Prüfstrom ¹⁾ , ohne RCD-Auslösung	√	/	√	/	/
Erdungswiderstand R_E (Netzbetrieb) I/U-Messverfahren (2-/3-Pol-Messverfahren	1	/	1	/	1
über Messadpater 2-Pol/2-Pol + Sonde)	•	'	•	'	•
Erdungswiderstand R _F (Akkubetrieb)					
3- oder 4-Pol-Messverfahren über Adapter PRO-RE	_	/	_	/	_
Spezifischer Erdwiderstand ρ _E (Akkubetrieb)		1		1	
(4-Pol-Messverfahren über Adapter PRO-RE)		•		•	
Selektiver Erdungswiderstand R _E (Netzbetrieb)					_
mit 2-Pol-Adpater, Sonde, Erder und Zangen-	✓	/	/	/	/
stromsensor (3-Pol-Messverfahren)					
Selektiver Erdungswiderstand R_E (Akkubetrieb) mit Sonde, Erder und Zangenstromsensor					
(4-Pol-Messverfahren über Adapter PRO-RE und	_	✓	_	✓	_
Zangenstromsensor)					
Erdschleifenwiderstand R _{ESCHL} (Akkubetrieb)					
mit 2 Zangen (Zangenstromsensor direkt und	_	1	_	✓	_
Zangenstromswandler über Adapter PRO-RE/2)					
Messung Potenzialausgleich R _{L0}	/	1	1	/	1
automatische Umpolung Isolationswiderstand R _{ISO}					
Prüfspannung variabel oder ansteigend (Rampe)	✓	1	✓	✓	✓
Spannung U _{L-N} / U _{L-PE} / U _{N-PE} / f	1	1	1	1	1
			-		
Sondermessungen	,	,	,		,
Ableitstrom (Zangenmessung) I _L , I _{AMP}	1	/	/	/	1
Drehfeldrichtung	/	/	1	/	/
Erdableitwiderstand $R_{E(ISO)}$ Spannungsfall (ΔU)	1	/	1	/	1
,	/	/	/	/	/
Standortisolation Z _{ST} Zähleranlauf (kWh-Test)	✓ ✓	/	/	\ \ \	/
Ableitstrom mit Adapter PRO-AB (IL)	•	/	/	1	_
Restspannung prüfen (Ures)				_	/
Intelligente Rampe (ta $+ \Delta l$)				/	
Elektrofahrzeuge an E-Ladesäulen (IEC 61851)		$\vdash \equiv$	_	\ \ \	
Protokollierung von Fehlersimulationen an		H-	,	· •	
PRCDs mit dem Adapter PROFITEST PRCD	_	-	_	1	_
·					
Ausstattung	,				
Sprache der Bedienerführung wählbar ²⁾	/	/	/	/	1
Speicher (Datenbank max. 50000 Objekte)	1	1	√	1	/
Autofunktion Prüfsequenzen	1	1	1	1	1
Schnittstelle für RFID-/Barcode Scanner RS232	1	/	/	/	/
Schnittstelle für Datenübertragung USB	/	/	/	/	/
Schnittstelle für <i>Bluetooth</i> ® PC-Anwendersoftware ETC			/	/	/
Messkategorie CAT III 600 V / CAT IV 300 V	1	/	1	/	/
DAKKS-Kalibrierschein	1	/	1	/	/
	✓	/	✓	/	/
economista Life Messung jet nur sinnvall f	ماما مالم	a \/a +a+	ما محدث	dor And	200 1/0

sogenannte Life-Messung, ist nur sinnvoll, falls keine Vorströme in der Anlage vorhanden sind. Nur für Motorschutzschalter mit kleinem Nennstrom geeignet.

²⁾ z. Zt. verfügbare Sprachen: D, GB, I, F, E, P, NL, S, N, FIN, CZ, PL

3 Sicherheitsmerkmale und -vorkehrungen

Das elektronische Mess- und Prüfgerät ist entsprechend den Sicherheitsbestimmungen IEC 61010-1/DIN EN 61010-1/VDE 0411-1 gebaut und geprüft.

Nur bei bestimmungsgemäßer Verwendung ist die Sicherheit von Anwender und Gerät gewährleistet.

Lesen Sie die Bedienungsanleitung vor dem Gebrauch Ihres Gerätes sorgfältig und vollständig. Beachten und befolgen Sie diese in allen Punkten. Machen Sie die Bedienungsanleitung allen Anwendern zugänglich.

Die Prüfungen dürfen nur durch eine Elektrofachkraft durchgeführt werden.

Halten Sie den Prüfstecker und die Prüfspitzen fest, wenn Sie sie z. B. in eine Buchse gesteckt haben. Bei Zugbelastung der Wendelleitung besteht Verletzungsgefahr durch den zurückschnellenden Prüfstecker oder die zurückschnellende Prüfspitze.

Das Mess-und Prüfgerät darf nicht verwendet werden:

- bei entferntem Batteriefachdeckel
- bei erkennbaren äußeren Beschädigungen
- mit beschädigten Anschlussleitungen und Messadaptern
- wenn es nicht mehr einwandfrei funktioniert
- nach längerer Lagerung unter ungünstigen Verhältnissen (z. B. Feuchtigkeit, Staub, Temperatur).

Haftungsausschluss

Bei der Prüfung von Netzen mit RCD-Schaltern, können diese abschalten. Dies kann auch dann vorkommen, wenn die Prüfung dies normalerweise nicht vorsieht. Es können bereits Ableitströme vorhanden sein, die zusammen mit dem Prüfstrom des Prüfgeräts die Abschaltschwelle des RCD-Schalters überschreiten. PCs, die in der Nähe betrieben werden, können somit abgeschaltet werden und damit ihre Daten verlieren. Vor der Prüfung sollten also alle Daten und Programme geeignet gesichert und ggf. der Rechner abgeschaltet werden. Der Hersteller des Prüfgerätes haftet nicht für direkte oder indirekte Schäden an Geräten, Rechnern, Peripherie oder Datenbeständen bei Durchführung der Prüfungen.

Öffnen des Gerätes / Reparatur

Das Gerät darf nur durch autorisierte Fachkräfte geöffnet werden, damit der einwandfreie und sichere Betrieb des Gerätes gewährleistet ist und die Garantie erhalten bleibt.

Auch Originalersatzteile dürfen nur durch autorisierte Fachkräfte eingebaut werden.

Falls feststellbar ist, dass das Gerät durch unautorisiertes Personal geöffnet wurde, werden keinerlei Gewährleistungsansprüche betreffend Personensicherheit, Messgenauigkeit, Konformität mit den geltenden Schutzmaßnahmen oder jegliche Folgeschäden durch den Hersteller gewährt.

Durch Beschädigen oder Entfernen des Garantiesiegels verfallen jegliche Garantieansprüche.

Bedeutung der Symbole auf dem Gerät

Warnung vor einer Gefahrenstelle (Achtung, Dokumentation beachten!)

Gerät der Schutzklasse II

Ladebuchse für DC-Kleinspannung (Ladegerät Z502R) **Achtung!**

Bei Anschluss des Ladegerätes dürfen nur Akkus eingesetzt sein.

Das Gerät darf nicht mit dem Hausmüll entsorgt werden. Weitere Informationen zur WEEE-Kennzeichnung finden Sie im Internet bei www.gossenmetrawatt.com unter dem Suchbegriff WEEE.

EG-Konformitätskennzeichnung

Durch Beschädigen oder Entfernen des Garantiesiegels verfallen jegliche Garantieansprüche.

Kalibriermarke (blaues Siegel):

siehe auch "Rekalibrierung" auf Seite 96

Datensicherung

Übertragen Sie Ihre gespeicherten Daten regelmäßig auf einen PC, um einem eventuellen Datenverlust vorzubeugen.

Für Datenverluste übernehmen wir keine Haftung.

Zur Aufbereitung und Verwaltung der Daten empfehlen wir die folgenden PC-Programme:

- ETC
- E-Befund Manager (Österreich)
- Protokollmanager
- PS3 (Dokumentation, Verwaltung, Protokollerstellung und Terminüberwachung)
- PC.doc-WORD/EXCEL (Protokoll- und Listenerstellung)
- PC.doc-ACCESS (Prüfdatenmanagement)

4 Inbetriebnahme

Erstinbetriebnahme

Vor der ersten Inbetriebnahme und Anwendung des Prüfgerätes müssen die Schutzfolien an den beiden Sensorflächen (Fingerkontakten) des Prüfsteckers entfernt werden, um eine sichere Erkennung von Berührspannungen zu gewährleisten.

4.2 Akku-Pack einsetzen bzw. austauschen

Achtuna!

Vor dem Öffnen des Akkufaches muss das Gerät allpolig vom Messkreis (Netz) getrennt werden!

Hinweis

Zum Ladevorgang des Kompakt Akku-Pack (Z502H) und zum Ladegerät Z502R siehe auch Kap. 20.2 auf Seite 87.

Verwenden Sie möglichst den mitgelieferten oder als Zubehör lieferbaren Kompakt Akku-Pack (Z502H) mit verschweißten Zellen. Hierdurch ist gewährleistet, dass immer ein kompletter Akkusatz ausgetauscht wird und alle Akkus polrichtig eingelegt sind, um ein Auslaufen der Akkus zu vermeiden.

Verwenden Sie nur dann handelsübliche Akku-Packs, wenn Sie diese extern laden. Die Qualität dieser Packs ist nicht überprüfbar und kann in ungünstigen Fällen (beim Laden im Gerät) zum Erhitzen und damit zu Verformungen führen.

Entsorgen Sie die Akku-Packs oder Einzelakkus gegen Ende der Brauchbarkeitsdauer (Ladekapazität ca. 80 %) umweltgerecht.

- Lösen Sie an der Rückseite die Schlitzschraube des Akkufachdeckels und nehmen Sie ihn ab.
- Nehmen Sie den entladenen Akku-Pack/Akkuträger heraus.

Achtung!

Bei Verwendung des Akkuträgers:

Achten Sie unbedingt auf das polrichtige Einsetzen aller Akkus. Ist bereits eine Zelle mit falscher Polarität eingesetzt, wird dies vom Prüfgerät nicht erkannt und führt möglicherweise zum Auslaufen der Akkus.

Einzelne Akkus dürfen nur extern geladen werden.

- Schieben Sie den neuen Akku-Pack/bestückten Akkuträger in das Akkufach.
 - Er kann nur in der richtigen Lage eingesetzt werden.
- Setzen Sie den Deckel wieder auf und schrauben Sie ihn fest.

Gerät ein-/ausschalten

Durch Drücken der Taste ON/START wird das Prüfgerät eingeschaltet. Das jeweilige der Funktionsschaltersstellung entsprechende Menü wird eingeblendet.

Durch gleichzeitiges Drücken der Tasten MEM und HELP wird das Gerät manuell ausgeschaltet.

Nach einer im SETUP eingestellten Zeit wird das Gerät automatisch ausgeschaltet, siehe Geräteeinstellungen Kap. 4.6.

4.4 **Akkutest**

Ist die Akkuspannung unter den zulässigen Wert BAT _____ abgesunken, erscheint das nebenstehende Piktogramm. Zusätzlich wird "Low Batt!!!" zusammen mit einem Akkusymbol eingeblendet. Bei sehr stark entladenen Akkus arbeitet das Gerät nicht. Es erscheint dann auch keine Anzeige.

4.5 Akku-Pack im Prüfgerät aufladen

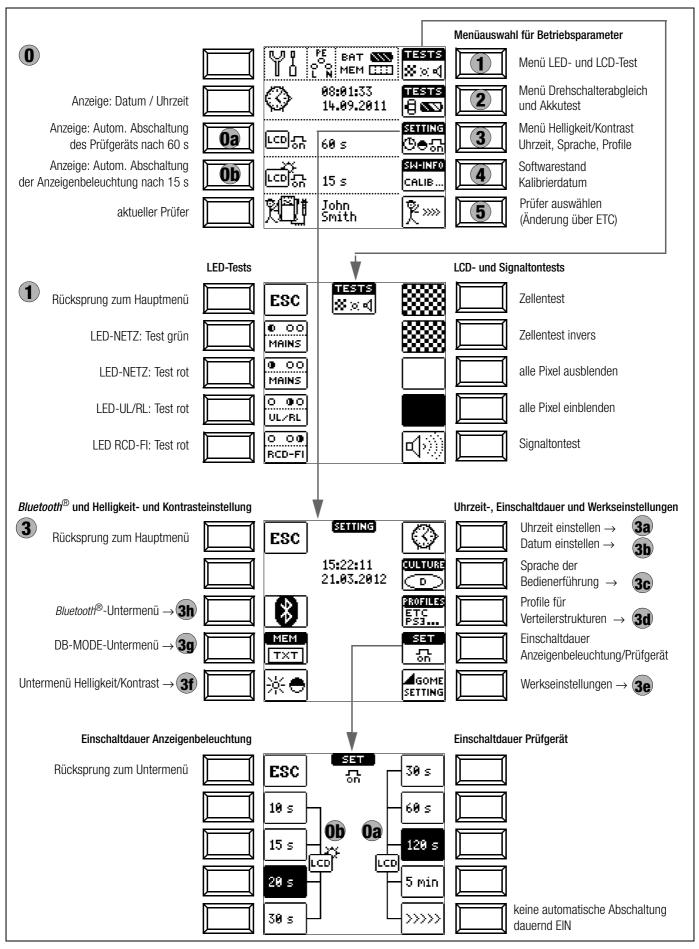
Achtung!

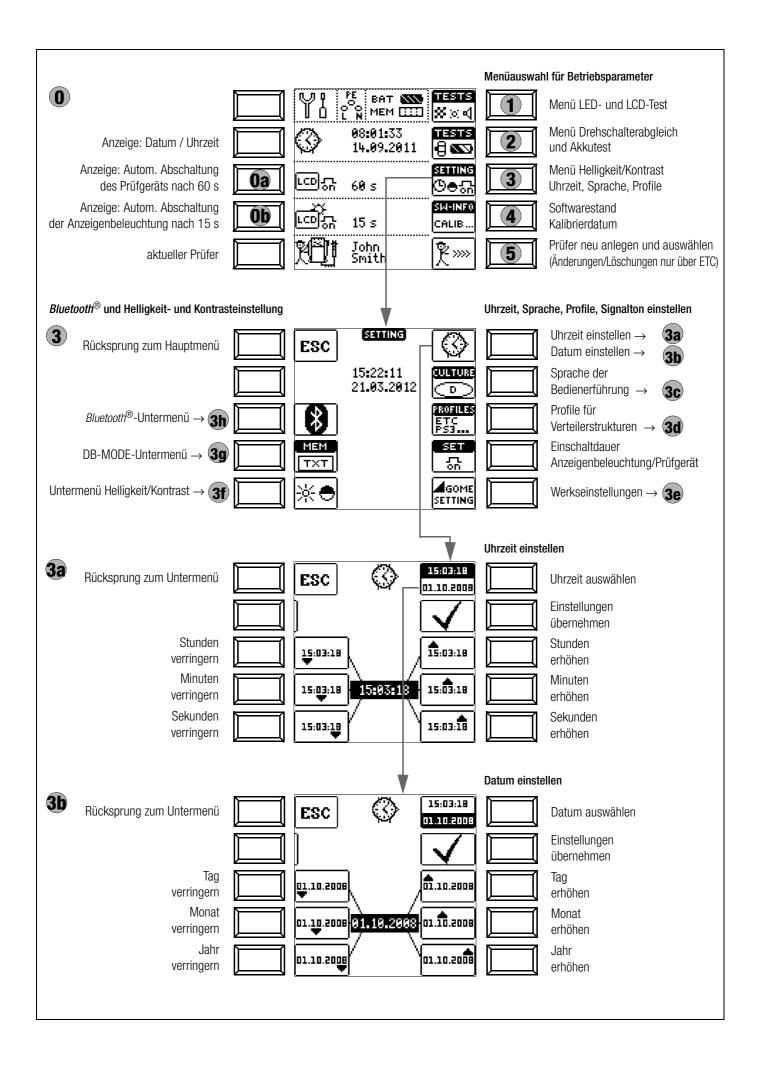
Verwenden Sie zum Laden des im Prüfgerät eingesetzten Kompakt Akku-Pack (Z502H) Ladegerät Z502R. Vor Anschluss des Ladegeräts an die Ladebuchse stellen Sie folgendes sicher:

 der Kompakt Akku-Pack (Z502H) ist eingelegt, keine handelsüblichen Akku-Packs,

keine Einzelakkus, keine Batterien

- das Prüfgerät ist allpolig vom Messkreis getrennt
- das Prüfgerät bleibt während des Ladevorgangs ausgeschaltet.

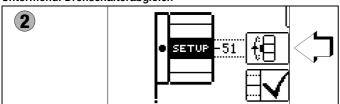

Zum Aufladen des im Prüfgerät eingesetzten Akku-Packs siehe Kap. 20.2.1.


Falls die Akkus bzw. der Akku-Pack längere Zeit (> 1 Monat) nicht verwendet bzw. geladen worden ist (bis zur Tiefentladung):

Beobachten Sie den Ladevorgang (Signalisierung durch LEDs am Ladegerät) und starten Sie gegebenenfalls einen weiteren Ladevorgang (nehmen Sie das Ladegerät hierzu vom Netz und trennen Sie es auch vom Prüfgerät. Schließen Sie es danach wieder an). Beachten Sie, dass die Systemuhr in diesem Fall nicht weiterläuft und bei Wiederinbetriebnahme neu gestellt werden muss.

4.6 Geräteeinstellungen

Qa Einschaltdauer Prüfgerät


Hier können Sie die Zeit auswählen, nach der sich das Prüfgerät automatisch abschaltet. Diese Auswahl wirkt sich stark auf die Lebensdauer/den Ladezustand der Akkus aus.

0b Einschaltdauer LCD-Beleuchtung

Hier können Sie die Zeit auswählen, nach der sich die LCD-Beleuchtung automatisch abschaltet. Diese Auswahl wirkt sich stark auf die Lebensdauer/den Ladezustand der Akkus aus.

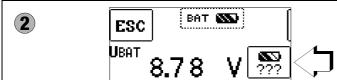
Untermenü: Drehschalterabgleich

Zur exakten Justierung des Drehschalters können Sie wie folgt vorgehen:

- 1 Um ins Untermenü Drehschalterabgleich zu gelangen. drücken Sie die Softkey-Taste TESTS Drehschalter/Akkutest.
- 2 Drücken Sie jetzt die Softkey-Taste mit dem Drehschaltersymbol.
- 3 Drehen Sie anschließend den Drehschalter im Uhrzeigersinn auf die jeweils nächste Messfunktion (nach SETUP zuerst I_{AN}).
- 4 Drücken Sie die dem Drehschalter auf der LCD zugeordnete Softkey-Taste. Nach Drücken dieser Softkey-Taste schaltet die Anzeige auf die jeweils nächste Messfunktion um. Die Beschriftung der LCD-Darstellung des Drehschalters muss mit der tatsächlichen Position des Drehschalters übereinstimmen.

Der Pegelstrich in der LCD-Darstellung des Drehschalters sollte mittig zum schwarzen Funktionsfeld stehen, wobei dieser durch eine Ziffer in einem Bereich von -1 bis 101 rechts stehend ergänzt wird. Dieser Wert sollte zwischen 45 und 55 liegen. Im Falle von -1 oder 101 stimmt die Drehradposition nicht mit der in der LCD-Darstellung angewählten Messfunktion überein.

5 Liegt der angezeigte Wert außerhalb dieses Bereichs, justieren Sie diese Position nach durch Drücken der Softkey-Taste Nachjustierung . Ein kurzer Signalton bestätigt die Nachjustierung.



Hinweis

Falls die Beschriftung der LCD-Darstellung des Drehschalters mit der tatsächlichen Position des Drehschalters nicht übereinstimmt, warnt ein Dauerton während des Drückens der Softkey-Taste Nachjustierung

- 6 Fahren Sie mit Punkt 2 fort. Wiederholen Sie diesen Ablauf sooft, bis Sie alle Drehschalterfunktionen kontrolliert bzw. nachjustiert haben.
- ⇒ Mit ESC gelangen Sie zurück zum Hauptmenü.

Untermenü: Akkuspannungsabfrage

Ist die Akkuspannung kleiner oder gleich 8,0 V leuchtet die LED **UL/RL** rot, zusätzlich ertönt ein Signal.

Hinweis

Messablauf

Sinkt die Akkuspannung unter 8,0 V während eines Messablaufs, wird dies allein durch ein Pop-up-Fenster signalisiert. Die gemessenen Werte sind

ungültig. Die Messergebnisse können nicht abgespeichert werden.

Mit ESC gelangen Sie zurück zum Hauptmenü.

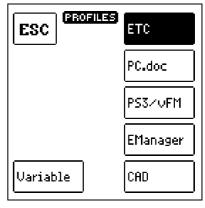
Achtung!

Datenverlust inklusive der Sequenzen bei Änderung der Sprache, des Profils, des DB-MODEs oder bei Rücksetzen auf Werkseinstellung!

Sichern Sie vor Drücken der jeweiligen Taste Ihre Strukturen. Messdaten und Sequenzen auf einem PC.

Das nebenstehende Abfragefenster fordert Sie zur nochmaligen Bestätigung der Löschung auf.

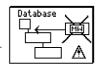
(3c) Sprache der Bedienerführung (CULTURE)


Wählen Sie das gewünschte Landes-Setup über das zugehörige Länderkennzeichen aus.

Achtung: sämtliche Strukturen, Daten und Sequenzen werden gelöscht, siehe Hinweis oben!

30 Profile für Verteilerstrukturen (PROFILES)

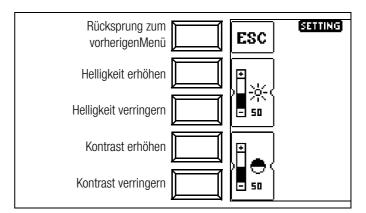
Die Profile beschreiben den Aufbau der Baumstruktur. Die Baumstruktur des verwendeten PC-Auswerteprogramms kann sich von der des **PROFITEST MASTER** unterscheiden. Daher bietet der PROFITEST MASTER die Möglichkeit, sich dieser Struktur anzupassen. Durch die Auswahl des

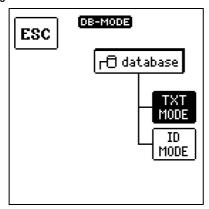

passenden Profils, wird geregelt, welche Objektkombinationen möglich sind. So ist es zum Bei-

spiel möglich, einen Verteiler unter einem Verteiler anzulegen oder eine Messung zu einem Gebäude zu speichern.

Wählen Sie das von Ihnen eingesetzte PC-Auswerteprogramm aus. Achtung: sämtliche Strukturen, Daten und Sequenzen werden gelöscht, siehe Hinweis oben!

Sofern Sie kein geeignetes PC-Auswerteprogramm ausgewählt haben und z. B. die Messwertspeicherung an der gewählten Stelle der Struktur nicht möglich ist, erscheint das nebenstehende Pop-up-Fenster.




Werkseinstellungen (GOME SETTING)

Durch Betätigen dieser Taste wird das Prüfgerät in den Zustand nach Werksauslieferung zurückgesetzt.

Achtung: sämtliche Strukturen, Daten und Sequenzen werden gelöscht, siehe Hinweis oben!

3f) Helligkeit und Kontrast einstellen

Erstellen von Strukturen im TXT MODE

Die Datenbank im Prüfgerät ist standardmäßig auf Text-Mode eingestellt, "TXT" wird in der Kopfzeile eingeblendet. Strukturelemente können von Ihnen im Prüfgerät angelegt und im "Klartext" beschriftet werden, z. B. Kunde XY, Verteiler XY und Stromkreis XY

Erstellen von Strukturen im ID MODE

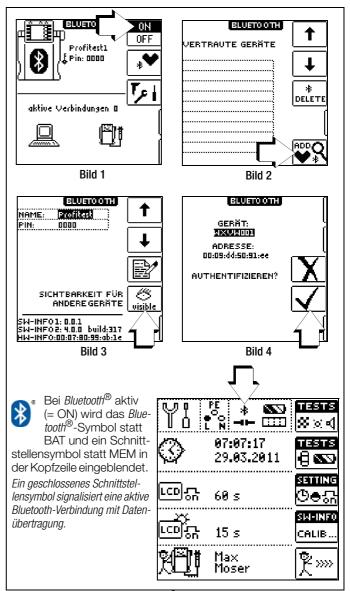
Alternativ können Sie im ID MODE arbeiten, "ID" wird in der Kopfzeile eingeblendet. Die Strukturelemente können von Ihnen im Prüfgerät angelegt und mit beliebigen Identnummern beschriftet werden.

Hinweis

Bei der Übertragung der Daten vom Prüfgerät zum PC bzw. zur ETC übernimmt die ETC immer die Darstellung (TXT- oder ID-Mode) des Prüfgeräts.

Bei der Übertragung der Daten vom PC bzw. der ETC zum Prüfgerät übernimmt das Prüfgerät immer die Darstellung der ETC.

Der jeweilige Datenempfänger übernimmt also immer die Darstellung des Datensenders.


Hinweis

Im Prüfgerät können entweder Strukturen im Text-Mode oder im Ident-Mode angelegt werden.

In der ETC dagegen werden immer Bezeichnungen und Identnummern vergeben.

Sind im Prüfgerät beim Anlegen von Strukturen keine Texte oder keine Identnummern hinterlegt worden, so generiert ETC selbsttätig die fehlenden Einträge. Anschließend können diese in der ETC bearbeitet und bei Bedarf ins Prüfgerät zurückübertragen werden.

3h Bluetooth® ein-/ausschalten (nur MTECH+/MXTRA/SECULIFE IP)

Sofern Ihr PC über eine Bluetooth®-Schnittstelle verfügt, können MTECH+, MXTRA oder SECULIFE IP kabellos mit der PC-Anwendersoftware ETC zur Übertragung von Daten und Prüfstrukturen kommunizieren.

Voraussetzung für einen kabellosen Datenaustausch ist die einmalige Authentifizierung des jeweiligen PCs mit dem Prüfgerät. Der Funktionsdrehschalter muss sich hierzu in Position SETUP befinden. Außerdem muss vor jeder Übertragung der richtige Bluetooth® COM-Port in der ETC ausgewählt werden.

Hinweis

Schalten Sie die Bluetooth®-Schnittstelle im Prüfgerät nur zur Datenübertragung ein.

Der Stromverbrauch verringert die Akkulaufzeit im Dauerbetrieb erheblich.

Befinden sich mehrere Prüfgeräte bei der Authentifizierung in Reichweite, sollten Sie den jeweiligen Namen ändern, um Verwechslungen auszuschließen. Es dürfen keine Leerzeichen verwendet werden. Sie können den standardmäßig vergebenen vierstelligen Pin-Code "0000" ändern, dies ist in der Regel jedoch nicht notwendig. In der Fußzeile von Bild 3 wird als HardWare-INFO die MAC-Adresse des Prüfgeräts eingeblendet.

Machen Sie Ihr Prüfgerät vor einer Autorisierung sichtbar, und aus Sicherheitsgründen anschließend wieder unsichtbar.

Erforderliche Schritte für eine Authentifizierung

Stellen Sie sicher, dass sich das Prüfgerät in Reichweite des PCs befindet (ca. 5 ... 8 Meter). Aktivieren Sie *Bluetooth*® im Prüfgerät (siehe Bild 1) und an Ihrem PC.

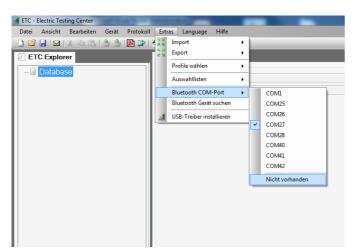
Der Funktionsdrehschalter muss sich hierbei in Position SETUP befinden.

Stellen Sie sicher dass das Prüfgerät (siehe Bild 3) und Ihr PC für andere *Bluetooth*®-Geräte sichtbar sind:

beim Prüfgerät muss visible unterhalb des Augensymbols eingeblendet sein.

Fügen Sie über Ihre *Bluetooth*®-PC-Treibersoftware ein neues *Bluetooth*®-Gerät hinzu. In den meisten Fällen erfolgt dies über die Schaltfläche "Neue Verbindung erstellen" oder "*Bluetooth*® Gerät hinzufügen".

Nachfolgende Schritte variieren, je nach verwendeter *Bluetooth*[®]-PC-Treibersoftware. Grundsätzlich muss am PC ein sogenannter Hauptschlüssel (auch Pin-Code genannt) eingegeben werden. Dieser ist standardmäßig "0000" und wird im *Bluetooth*[®]-Hauptmenü (Bild 1) des Prüfgeräts angezeigt. Im Anschluss, oder zuvor, muss am Prüfgerät eine Authentifizierungsmeldung bestätigt werden (Bild 4).


War die Authentifizierung erfolgreich, so wird am Prüfgerät eine entsprechende Meldung angezeigt. Außerdem wird der authentifizierte PC im Prüfgerät im Menü "Vertraute Geräte" (Bild 2) angezeigt.

In Ihrer *Bluetooth*® PC-Treibersoftware sollte nun auch der **MTECH+**, **MXTRA** oder das **SECULIFE IP** als Gerät aufgelistet sein. Dort erhalten Sie auch weitere Informationen zu der verwendeten COM-Schnittstelle. Sie müssen mithilfe Ihrer *Bluetooth*® PC-Treibersoftware die zu der *Bluetooth*®-Verbindung gehörende COM-Schnittstelle herausfinden. Oft wird diese nach der Authentifizierung angezeigt, falls nicht, finden Sie dazu Informationen in Ihrer *Bluetooth*® PC-Treibersoftware.

Die ETC bietet eine Funktion, die COM-Schnittstelle nach erfolgreicher Authentifizierung automatisch zu suchen, siehe Hardcopy unten.

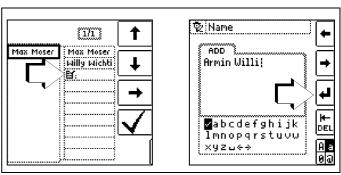
Befindet sich das Prüfgerät in Reichweite Ihres PCs (5 bis 8 Meter) kann nun mithilfe der ETC über den Menüpunkt Extras/ Bluetooth[®] ein kabelloser Datenaustausch stattfinden. Hierfür muss die ermittelte COM-Schnittstellenummer (z. B. COM40) beim Start des Datenaustausches in der ETC angegeben werden, siehe Hardcopy unten.

Alternativ kann über den Menü-Eintrag "Bluetooth Gerät suchen" die COM-Schnittstellennummer automatisch ausgewählt werden.

Firmwarestand und Kalibrierinfo (Beispiel)

 Durch Drücken einer beliebigen Taste gelangen Sie zurück zum Hauptmenü.

Firmware-Update mithilfe des MASTER Updaters


Der Aufbau der Prüfgeräte ermöglicht das Anpassen der Gerätesoftware an die neuesten Normen und Vorschriften. Darüber hinaus führen Anregungen von Kunden zu einer ständigen Verbesserung der Prüfgerätesoftware und zu neuen Funktionalitäten. Damit Sie alle diese Vorteile auch schnell und einfach nutzen können, ermöglicht Ihnen der MASTER Updater eine schnelle Aktualisierung der kompletten Gerätesoftware Ihres Prüfgeräts vor Ort. Die Bedienoberfläche ist einstellbar für deutsch, englisch und italienisch.

Hinweis

Ein kostenloser Download des MASTER Updaters sowie der aktuellen Firmwareversion steht Ihnen als registrierter Anwender im Bereich myGMC zur Verfügung.

5 Prüfer neu anlegen und auswählen

Zur Eingabe eines Textes siehe auch Kap. 5.7 Seite 15.

5 Allgemeine Hinweise

Gerät anschließen 5.1

In Anlagen mit Schutzkontakt-Steckdosen schließen Sie das Gerät mit dem Prüfstecker, auf dem der passende länderspezifische Steckereinsatz befestigt ist, an das Netz an. Die Spannung zwischen Außenleiter L und Schutzleiter PE darf maximal 253 V

Sie brauchen dabei nicht auf die Steckerpolung achten. Das Gerät prüft die Lage von Außenleiter L und Neutralleiter N und polt, wenn erforderlich, den Anschluss automatisch um. Ausgenommen davon sind:

- Spannungsmessung in Schalterstellung U
- Isolations-Widerstandsmessung
- Niederohm-Widerstandsmessung

Die Lage von Außenleiter L und Neutralleiter N sind am Steckereinsatz gekennzeichnet.

Wenn Sie an Drehstrom-Steckdosen, in Verteilern oder an Festanschlüssen messen, dann nehmen Sie den Messadapter (2-polig) und befestigen ihn am Prüfstecker (siehe hierzu auch Tabelle 16.1). Den Anschluss stellen Sie mit der Prüfspitze (an PE bzw. N) und über die zweite Prüfspitze (an L) her.

Zur Drehfeldmessung müssen Sie den zweipoligen Messadapter mit der beiliegenden Messleitung zum Dreipol-Adapter ergänzen. Berührungsspannung (bei der RCD-Prüfung) und Erdungswiderstand können, Erderspannung, Standortisolationswiderstand und Sondenspannung müssen mit einer Sonde gemessen werden. Sie wird an der Sondenanschlussbuchse über einen berührungsgeschützten Anschlussstecker mit 4 mm Durchmesser angeschlossen.

Automatische Einstellung, Überwachung und Abschaltung 5.2

Das Prüfgerät stellt automatisch alle Betriebsbedingungen ein, die es selbsttätig ermitteln kann. Es prüft die Spannung und die Frequenz des angeschlossenen Netzes. Liegen die Werte innerhalb gültiger Nennspannungs- und Nennfrequenzbereiche, dann werden sie im Anzeigefeld angezeigt. Liegen die Werte außerhalb, dann werden statt U_N und f_N die aktuellen Werte von Spannung (U) und Frequenz (f) angezeigt.

Die Berührungsspannung, die vom Prüfstrom erzeugt wird, wird bei jedem Messablauf überwacht. Überschreitet die Berührungsspannung den Grenzwert von > 25 V bzw. > 50 V, so wird die Messung sofort abgebrochen. Die LED U_L/R_L leuchtet rot.

Das Gerät lässt sich nicht in Betrieb nehmen bzw. es schaltet sofort ab, wenn die Akkuspannung den zulässigen Grenzwert

Die Messung wird automatisch abgebrochen bzw. der Messablauf gesperrt (ausgenommen Spannungsmessbereiche und Drehfeldmessung):

- bei unzulässiger Netzspannung (< 60 V, > 253 V / > 330 V / > 440 V bzw. > 550 V) bei Messungen, bei denen Netzspannung erforderlich ist
- wenn bei einer Isolationswiderstands- bzw. Niederohmmessung eine Fremdspannung vorhanden ist
- wenn die Temperatur im Gerät zu hoch ist. Unzulässige Temperaturen treten in der Regel erst nach ca. 50 Messabläufen im 5 s-Takt auf, wenn der Funktionsdrehschalter in der Schaltstellung Z_{L-PE} oder Z_{L-N} ist. Beim Versuch einen Messablauf zu starten, erfolgt eine entsprechende Meldung auf dem Anzeigefeld.

Das Gerät schaltet sich frühestens am Ende eines (automatischen) Messablaufs und nach Ablauf der vorgegebenen Einschaltdauer (siehe Kapitel 4.3) automatisch ab. Die Einschaltdauer verlängert sich wieder um die im Setup eingestellte Zeit, wenn eine Taste oder der Funktionsdrehschalter betätigt wird. Bei der Messung mit steigendem Fehlerstrom in Anlagen mit

selektiven RCD-Schutzschaltern bleibt das Prüfgerät ca. 75 s lang eingeschaltet zuzüglich der vorgegebenen Einschaltdauer.

Das Gerät schaltet sich immer selbstständig ab!

5.3 Messwertanzeige und Messwertspeicherung

Im Anzeigefeld werden angezeigt:

- Messwerte mit ihrer Kurzbezeichnung und Einheit,
- die ausgewählte Funktion,
- die Nennspannung,
- die Nennfrequenz
- sowie Fehlermeldungen.

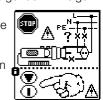
Bei den automatisch ablaufenden Messvorgängen werden die Messwerte bis zum Start eines weiteren Messvorganges bzw. bis zum selbsttätigen Abschalten des Gerätes gespeichert und als digitale Werte angezeigt.

Wird der Messbereichsendwert überschritten, so wird der Endwert mit dem vorangestellten ">" (größer) Zeichen dargestellt und damit Messwertüberlauf signalisiert.

Hinweis

Die LCD-Darstellungen in dieser Bedienungsanleitung können aufgrund von Produktverbesserungen von denen des aktuellen Geräts abweichen.

5.4 Schutzkontakt-Steckdosen auf richtigen Anschluss prüfen


Das Prüfen von Schutzkontakt-Steckdosen auf richtigen Anschluss, vor der jeweiligen Prüfung der Schutzmaßnahme, wird durch das Fehlererkennungssystem des Prüfgeräts erleichtert.

Das Gerät zeigt einen fehlerhaften Anschluss folgendermaßen an:

- Unzulässige Netzspannung (< 60 V oder > 253 V): Die LED MAINS/NETZ blinkt rot und der Messablauf ist
- Schutzleiter nicht angeschlossen oder Potenzial gegen Erde \geq 50 V bei ≥ 50 Hz (Schalterstellung U – Einphasenmessung): Beim Berühren der Kontaktflächen (Fingerkontakte*) bei gleichzeitiger Kontaktierung von PE (sowohl durch länderspezifischen Steckereinsatz z. B. SCHUKO als auch durch die Prüfspitze PE am 2-Pol-Adapter) wird PE eingeblendet (nur nach Start eines Prüfablaufs). Zusätzlich leuchten die LEDs U_L/R_L und RCD/FI rot.
 - zum sicheren Erkennen der Berührspannungen müssen am Prüfstecker beide Sensorflächen mit den ungeschützten Fingern/Handfläche im direkten Hautkontakt berührt werden, siehe auch Kapitel 4.1.
- Neutralleiter N nicht angeschlossen (bei netzabhängigen Messungen): die LED MAINS/NETZ blinkt grün
- Einer der beiden Schutzkontakte nicht angeschlossen: Dies wird bei der Berührspannungsprüfung $U_{l\Delta N}$ automatisch

überprüft. Ein schlechter Übergangswiderstand eines Kontaktes führt je nach Polung des Steckers zu folgenden Anzeigen:

Anzeige im Anschlusspiktogramm: PE unterbrochen (x) oder in Bezug auf die Tasten des Prüfsteckers unten liegender Schutzleiterbügel unterbrochen Ursache: Spannungs-Messpfad unterbrochen Folge: die Messung wird blockiert

Anzeige im Anschlusspiktogramm:

in Bezug auf die Tasten des Prüfsteckers oben liegender Schutzleiterbügel unterbrochen

Ursache: Strom-Messpfad unterbrochen Folge: keine Messwertanzeige

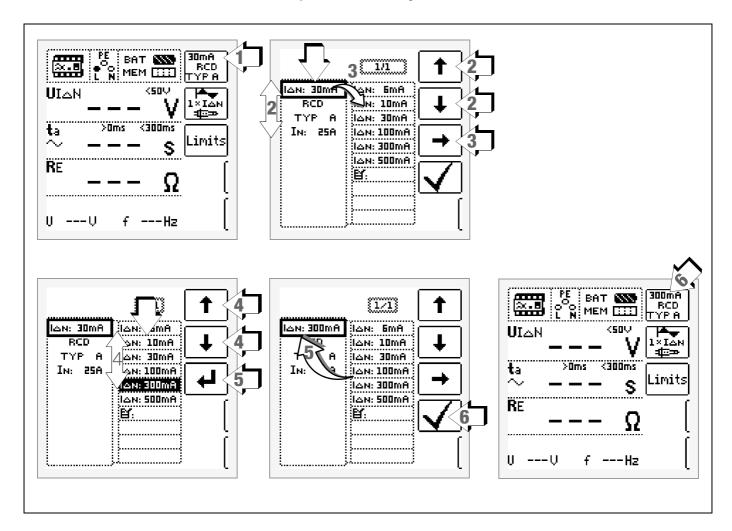
Hinweis

Siehe auch "Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen" ab Seite 73.

Achtung!

Ein Vertauschen von N und PE in einem Netz ohne RCD-Schalter wird nicht erkannt und nicht signalisiert. In einem Netz mit RCD-Schalter löst dieser bei der Berührungsspannungsmessung ohne Auslösung (automatische Z_{I-N}-Messung) aus, sofern N und PE vertauscht sind.

5.5 Hilfefunktion


Für jede Schalterstellung bzw. Grundfunktion können Sie, **nach deren Wahl über den Funktionsdrehschalter**, folgende Informationen darstellen:

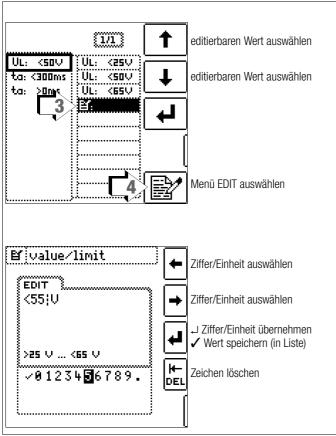
- Anschlussschaltbild
- Messbereich
- · Nenngebrauchsbereich und Betriebsmessunsicherheit
- Nennwert
- Drücken Sie zum Aufruf der Hilfefunktion die Taste HELP.
- Sind mehrere Hilfeseiten je Messfunktion vorhanden, muss die Taste HELP wiederholt gedrückt werden.
- Drücken Sie zum Verlassen der Hilfefunktion die Taste ESC.

5.6 Parameter oder Grenzwerte einstellen am Beispiel der RCD-Messung

- 1 Untermenü zum Einstellen der gewünschten Parameter aufrufen.
- 2 Parameter über die Cursortasten ↑ oder ↓ auswählen.
- 3 Ins Einstellmenü des gewählten Parameters über die Cursortaste \rightarrow wechseln.
- 4 Einstellwert über die Cursortasten ↑ oder ↓ auswählen.
- 5 Einstellwert über → bestätigen. Dieser Wert wird ins Einstellmenü über-
- 6 Erst mit ✓ wird der Einstellwert dauerhaft für die zugehörige Messung übernommen und ins Hauptmenü zurückgesprungen. Statt mit ✓ gelangen Sie mit ESC zurück ins Hauptmenü, ohne den neu gewählten Wert zu übernehmen.

Parameterverriegelung (Plausibilitätsprüfung)

Einzelne gewählten Parameter werden vor der Übernahme ins Messfenster auf Plausibilität überprüft.


Ist der von Ihnen gewählte Parameter in Kombination mit anderen bereits eingestellten Parametern nicht sinnvoll so wird dieser nicht übernommen. Der zuvor eingestellte Parameter bleibt gespeichert

Abhilfe: Wählen Sie einen anderen Parameter.

5.7 Frei einstellbare Parameter oder Grenzwerte

Für bestimmte Parameter sind neben den Festwerten weitere Werte in vorgegebenen Grenzen frei einstellbar, sofern das Symbol Menü EDIT (3) am Ende der Liste der Einstellwerte erscheint.

Grenzwert oder Nennspannung frei vergeben

- Untermenü zum Einstellen des gewünschten Parameters aufrufen (ohne Abbildung, siehe Kap. 5.6).
- 2 Parameter ($\mathbf{U_L}$) über die Cursortasten \uparrow oder \downarrow auswählen (ohne Abbildung, siehe Kap. 5.6).
- Einstellwert mit dem Symbol Ef über die Cursortasten ↑ oder ↓ auswäh-
- 4 Editiermenü auswählen: Taste mit dem Symbol drücken.
- 5 Über die Cursortasten LINKS oder RECHTS wählen Sie die jeweilige Ziffer oder Einheit aus. Mit

 wird die Ziffer oder Einheit übernommen. Die Übernahme des kompletten Wertes erfolgt mit Anwahl von ✓ und bestätigen

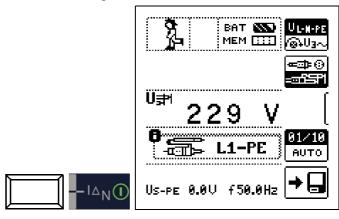
Hinweis

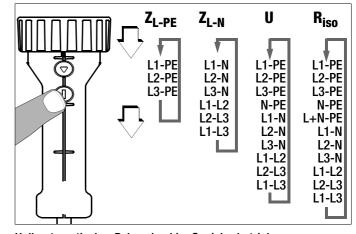
Beachten Sie die vorgegebenen Grenzen für den neuen Einstellwert.

Neue frei eingestellte Grenzwerte oder Nennwerte der Parameterliste können mithilfe des PCs über das Programm ETC gelöscht/geändert werden.

Bei Überschreiten des oberen Grenzwertes wird dieser Grenzwert übernnommen (im Bsp. 65 V), bei Unterschreiten entsprechend der vorgegebene untere (25 V).

5.8 Zweipolmessung mit schnellem oder halbautomatischem Polwechsel

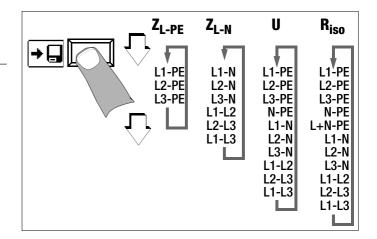

Für folgende Prüfungen ist eine schnelle halbautomatische Zweipolmessung möglich.


- Spannungsmessung U
- Schleifenimpedanzmessung Z_{LP-E}
- Netzinnenwiderstandsmessung Z_{I-N}
- Isolationswiderstandsmessung R_{ISO}

Schneller Polwechsel am Prüfstecker

Der Polungsparameter steht auf AUTO.

Eine schnelle und komfortable Umschaltung zwischen allen Polungsvarianten ohne Umschaltung in das Untermenü zur Parametereinstellung ist durch Drücken der Taste I_{AN} am Gerät oder am Prüfstecker möglich.



Halbautomatischer Polwechsel im Speicherbetrieb

Der Polungsparameter steht auf AUTO.

Soll eine Prüfung mit allen Polungsvarianten durchgeführt werden. so erfolgt nach jeder Messung ein automatischer Polwechsel nach dem Speichern.

Ein Überspringen von Polungsvarianten ist durch Drücken der Taste I_{AN} am Gerät oder am Prüfstecker möglich.

6 Messen von Spannung und Frequenz

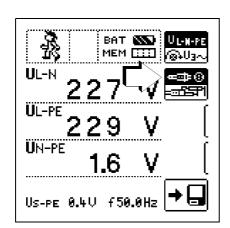
Messfunktion wählen



Umschalten zwischen 1- und 3-Phasen-Messung

Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen 1- und 3-Phasen-Messung um. Die gewählte Phasenmessung wird invers dargestellt (weiß auf schwarz).

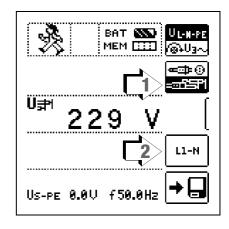
6.1 1-Phasenmessung

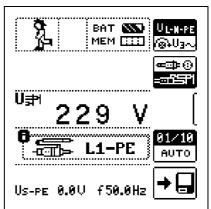


Für die Messung der Sondenspannung $U_{S\text{-PE}}$ muss eine Sonde gesetzt werden.

6.1.1 Spannung zwischen L und N (U_{L-N}), L und PE (U_{L-PE}) sowie N und PE (U_{N-PE}) bei länderspezifischem Steckereinsatz, z. B. SCHUKO

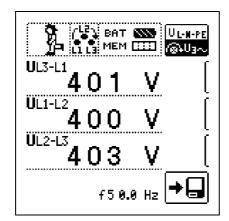
Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen länderspezifischem Steckereinsatz z. B. SCHUKO und 2-Pol-Adapter um. Die gewählte Anschlussart wird invers dargestellt (weiß auf schwarz).




6.1.2 Spannung zwischen L – PE, N – PE und L – L bei Anschluss 2-Pol-Adpater

Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen länderspezifischem Steckereinsatz z. B. SCHUKO und 2-Pol-Adapter um. Die gewählte Anschlussart wird invers dargestellt (weiß auf schwarz).

Zweipolmessung mit schnellem oder halbautomatischem Polwechsel, siehe Kap. 5.8.


6.2 3-Phasenmessung (verkettete Spannungen) und Drehfeldrichtung

Anschluss

Zum Anschließen des Gerätes benötigen Sie den Messadapter (2polig) der mit der mitgelieferten Messleitung zum dreipoligen Messadapter erweitert werden muss.

Softkey-Taste U3~ drücken

An allen Drehstromsteckdosen ist generell ein Rechtsdrehfeld gefordert

- Der Messgeräteanschluss bei CEE-Steckdosen ist meist problematisch, es gibt Kontaktprobleme. mithilfe des von uns angebotenen VARIO-STECKER-SETs Z500A sind schnelle und zuverlässige Messungen ohne Kontaktprobleme durchführbar.
- Anschluss bei 3-Leitermessung Stecker L1-L2-L3 im Uhrzeigersinn ab PE-Buchse

Die Drehfeldrichtung wird über folgende Einblendungen angezeigt:

Rechtsdrehfeld

Sämtliche Signalisierungen zur Netzanschlusskontrolle siehe Kap. 18.

Spannungspolarität

Hinweis

Wenn Normen den Einbau von einpoligen Schaltern im Neutralleiter verbieten, muss durch eine Prüfung der Spannungspolarität festgestellt werden, dass alle etwa vorhandenen einpoligen Schalter in den Außenleitern eingebaut sind.

7 Prüfen von Fehlerstrom-Schutzschaltungen (RCD)

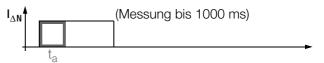
Das Prüfen von Fehlerstrom-Schutzeinrichtungen (RCD) umfasst:

- · Besichtigen,
- Erproben,
- Messen.

Zum Erproben und Messen verwenden Sie das Prüfgerät.

Messverfahren

Durch Erzeugen eines Fehlerstromes hinter der Fehlerstrom-Schutzeinrichtung ist nachzuweisen, dass die


- Fehlerstrom-Schutzeinrichtung spätestens bei Erreichen ihres Nennfehlerstromes auslöst und
- die für die Anlage vereinbarte Grenze der dauernd zulässigen Berührungsspannung U₁ nicht überschritten wird.

Dies wird erreicht durch:

• Messung der Berührungsspannung 10 Messungen mit Vollwellen und Hochrechnung auf $I_{\Delta N}$

 Nachweis der Auslösung innerhalb von 400 ms bzw. 200 ms mit I_{AN}

 Nachweis des Auslösestromes mit ansteigendem Fehlerstrom

Er muss zwischen 50% und 100% von $\rm I_{\Delta N}$ liegen (meist bei ca. 70%)

 Keine vorzeitige Auslösung mit dem Prüfgerät, da mit 30% des Fehlerstromes gestartet wird (wenn kein Vorstrom in der Anlage fließt).

Tabelle RCD/FI	Korrekte Funktion des RCD/FI- Schalters				
		Typ AC	Typ A/F	Typ B*/ B+*	Typ EV/ MI*
Wechselstrom	plötzlich auftretend langsam ansteigend	•	~	V	~
Pulsierender Gleichstrom	plötzlich auftretend A langsam ansteigend	-	V	V	V
Gleichstrom				~	~
Gleichstrom bis 6 mA					~

^{*} nur PROFITEST MTECH+, PROFITEST MXTRA und SECULIFE IP

Prüfnorm

Gemäß DIN VDE 0100-600:2008 ist nachzuweisen, dass

- die beim Nennfehlerstrom auftretende Berührungsspannung den für die Anlage maximal zulässigen Wert nicht überschreitet.
- die Fehlerstrom-Schutzschalter beim Nennfehlerstrom innerhalb 400 ms (1000 ms bei selektiven RCD-Schutzschaltern) auslösen.

Wichtige Hinweise

- Der PROFITEST MASTER erlaubt einfache Messungen an allen RCD-Typen. Wählen Sie RCD, SRCD, PRCD, o. ä.
- Die Messung muss pro RCD (FI) nur an einer Stelle in den angeschlossenen Stromkreisen erfolgen, an allen anderen Anschlüssen im Stromkreis muss niederohmiger Durchgang des Schutzleiters nachgewiesen werden (R_{LO} oder U_B).
- Im TN-System zeigen die Messgeräte wegen des niedrigen Schutzleiterwiderstandes oft 0,1 V Berührungsspannung an.
- Beachten Sie auch evtl. Vorströme in der Anlage. Diese können zum Auslösen des RCDs bereits bei Messung der Berührungsspannung UB führen oder bei Messungen mit steigendem Strom zu Fehlanzeigen führen:

Anzeige = I_F - I_{Vorstrom}

- Selektive Fehlerstrom-Schutzeinrichtungen (RCD S) mit Kennzeichnung **S** können als alleiniger Schutz für automatische Abschaltung eingesetzt werden, wenn sie die Abschaltbedingungen wie nicht selektive Fehlerstrom-Schutzeinrichtungen einhalten (also t_a < 400 ms). Dies kann durch Messung der Abschaltzeit nachgewiesen werden.
- RCDs Typ B dürfen nicht in Reihe mit RCDs vom Typ A oder F liegen.

Hinweis

Vormagnetisierung

Über den 2-Pol-Adapter sind nur AC-Messungen vorgesehen. Eine Unterdrückung der RCD-Auslösung über eine Vormagnetisierung durch Gleichstrom ist nur über den länderspezifischen Steckereinsatz z. B. SCHUKO oder den 3-Pol-Adapter möglich.

Messung ohne oder mit Sonde

Die Messungen können Sie mit oder ohne Sonde ausführen. Die Messung mit Sonde setzt voraus, dass die Sonde das Potenzial der Bezugserde hat. Das bedeutet, dass sie außerhalb des Spannungstrichters des Erders (R_E) der RCD-Schutzschaltung gesetzt wird.

Der Abstand Erder zur Sonde soll mindestens 20 m betragen. Die Sonde wird mit einem berührungsgeschützten Stecker mit 4 mm Durchmesser angeschlossen.

In den meisten Fällen werden Sie diese Messung ohne Sonde ausführen.

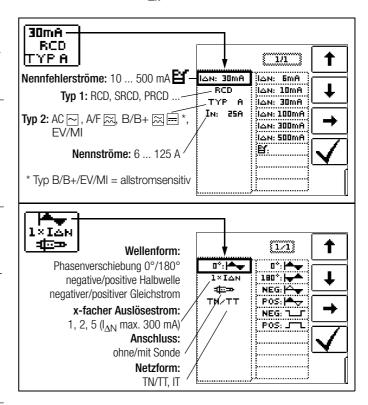
Achtuna!

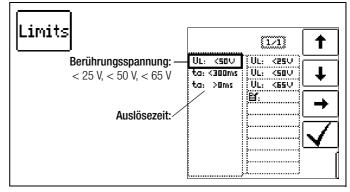
Die Sonde ist Teil des Messkreises und kann nach VDE 0413 einen Strom bis maximal 3.5 mA führen.

Sie können die Spannungsfreiheit einer Sonde mit der Funktion U_{SONDE} überprüfen, siehe auch Kap. 6.1 auf Seite 16.

7.1 Messen der (auf Nennfehlerstrom bezogenen) Berührungsspannung mit ¹/₃ des Nennfehlerstromes und Auslöseprüfung mit Nennfehlerstrom

Messfunktion wählen

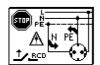



Anschluss

Parameter einstellen für IAN

1) Messung der Berührungsspannung ohne Auslösen des RCDs

Messverfahren

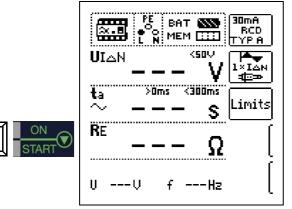

Zur Ermittlung der bei Nennfehlerstrom auftretenden Berührungsspannung U_{IAN} misst das Gerät mit einem Strom, der nur ca. 1/3 des Nennfehlerstromes beträgt. Dadurch wird verhindert, dass dabei der RCD-Schutzschalter auslöst.

Der besondere Vorteil dieses Messverfahrens liegt darin, dass Sie an jeder Steckdose die Berührungsspannung einfach und schnell messen können, ohne dass der RCD-Schutzschalter auslöst.

Die sonst übliche und umständliche Messmethode, die Wirksamkeit der RCD-Schutzeinrichtung an einer Stelle zu prüfen und nachzuweisen, dass alle anderen zu schützenden Anlagenteile über den PE-Leiter mit dieser Messstelle niederohmig und zuverlässig verbunden sind, kann entfallen.

N-PE-Vertauscherprüfung

Es findet eine zusätzliche Prüfung statt, in der ermittelt wird, ob N und PE vertauscht sind. Im Fall einer Vertauschung erscheint das nebenstehende Pop-up.



Achtuna!

Um Datenverlust bei Datenverarbeitungsanlagen zu vermeiden, sichern Sie vorher Ihre Daten und schalten am besten alle Verbraucher ab.

Messung starten

Im Anzeigefeld werden u. a. die Berührungsspannung $U_{|\Delta N}$ und der berechnete Erdungswiderstand R_E angezeigt.

Hinweis

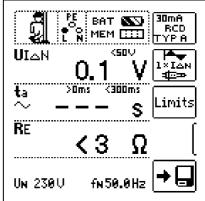
Der Messwert des Erdungswiderstandes R_E wird nur mit einem geringen Strom ermittelt. Genauere Werte erhalten Sie in der Schalterstellung R_E.

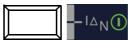
Bei Anlagen mit RCD-Schutzschalter kann dort die Funktion DC + ____ gewählt werden.

Unbeabsichtigtes Auslösen des RCDs durch Vorströme in der Anlage

Eventuell auftretende Vorströme können gemäß Kap. 13.1 auf Seite 50 mithilfe eines Zangenstromwandlers ermittelt werden. Sind die Vorströme in der Anlage recht groß oder wurde ein zu hoher Prüfstrom für den Schalter gewählt, so kann es zum Auslösen des RCD-Schalters während der Prüfung der Berührungsspannung kommen.

Nachdem Sie die Berührungsspannung gemessen haben, können Sie mit dem Gerät prüfen, ob der RCD-Schutzschalter bei Nennfehlerstrom innerhalb seiner eingestellten Grenzwerte aus-


Unbeabsichtigtes Auslösen des RCDs durch Ableitströme im Messkreis


Bei der Messung der Berührungsspannung mit 30% des Nennfehlerstroms, löst ein RCD-Schalter normalerweise nicht aus. Durch bereits vorhandene Ableitströme im Messkreis, z. B. durch angeschlossene Verbraucher mit EMV-Beschaltung z. B. Frequenzumrichter, PCs, kann trotzdem die Abschaltgrenze überschritten werden.

2) Auslöseprüfung nach dem Messen der Berührungsspannung

 \Rightarrow Drücken Sie die Taste I_{AN}.

Die Auslöseprüfung ist für jeden RCD-Schutzschalter nur an einer Messstelle erforderlich.

Löst der RCD-Schutzschalter beim Nennfehlerstrom aus,

dann blinkt die LED MAINS/NETZ rot (Netzspannung wurde abgeschaltet) und im Anzeigefeld werden u. a. die Auslösezeit ta und der Erdungswiderstand R_E angezeigt.

Löst der RCD-Schutzschalter beim Nennfehlerstrom nicht aus, dann leuchtet die LED RCD/FI rot.

Berührungsspannung zu hoch

Ist die mit 1/3 des Nennfehlerstromes $\rm I_{\Delta N}$ gemessene und auf $\rm I_{\Delta N}$ hochgerechnete Berührungsspannung U_{IAN} > 50 V (> 25 V), dann leuchtet die LED U_1/R_1 rot.

Wird während des Messvorganges die Berührungsspannung $U_{l\Delta N}$ > 50 V (> 25 V), dann erfolgt eine Sicherheitsabschaltung.

Hinweis

Sicherheitsabschaltung: Bis 70 V erfolgt die Sicherheitsabschaltung innerhalb von 3 s nach IEC 61010.

Die Berührungsspannungen werden bis 70 V angezeigt. Ist der Wert größer, wird $U_{I\Lambda N} > 70 \text{ V}$ angezeigt.

Grenzwerte für dauernd zulässige Berührungsspannungen

Die Grenze für die dauernd zulässige Berührungsspannung beträgt bei Wechselspannung U_I = 50 V (internationale Vereinbarung). Für besondere Anwendungsfälle sind niedrigere Werte vorgeschrieben (z. B. medizinische Anwendungen $U_L = 25 \text{ V}$).

Achtung!

Wenn die Berührungsspannung zu hoch ist oder der RCD-Schutzschalter nicht auslöst, dann ist die Anlage zu reparieren (z. B. zu hoher Erdungswiderstand, defekter RCD-Schutzschalter usw.)!

Drehstromanschlüsse

Bei Drehstromanschlüssen muss zur einwandfreien Kontrolle der RCD-Schutzeinrichtung die Auslöseprüfung in Verbindung mit einem der drei Außenleiter (L1, L2 und L3) ausgeführt werden.

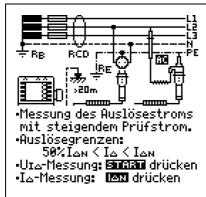
Induktive Verbraucher

Werden bei der Abschaltprüfung eines RCDs induktive Verbraucher mit abgeschaltet, so kann es beim Abschalten zu Spannungsspitzen im Kreis kommen. Das Prüfgerät zeigt dann evtl. keinen Messwert (- - -) an. Schalten Sie in diesem Fall alle Verbraucher vor der Auslöseprüfung ab. In extremen Fällen kann eine der Sicherungen im Prüfgerät auslösen und/oder das Prüfgerät beschädigt werden.

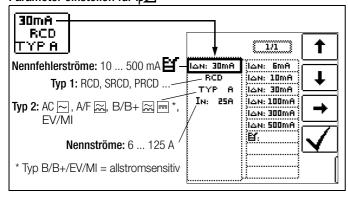
7.2.1 Prüfen von Anlagen bzw. RCD-Schutzschaltern mit ansteigendem Fehlerstrom (Wechselstrom) für RCDs vom Typ AC, A/F, B/B+ und EV/MI

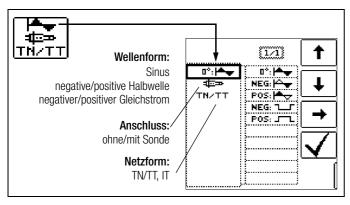
Messverfahren

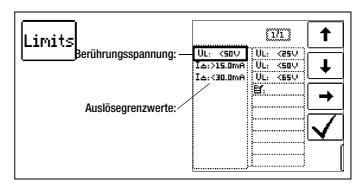
Zur Prüfung der RCD-Schutzschaltung erzeugt das Gerät im Netz einen kontinuierlich steigenden Fehlerstrom von (0,3 ... 1,3) • Ι_{ΔΝ}. Das Gerät speichert die im Auslösemoment des RCD-Schutzschalters vorhandenen Werte der Berührungsspannung und des Auslösestromes und zeigt sie an.

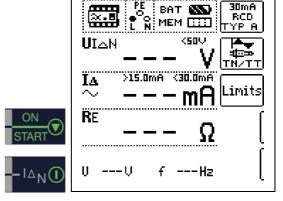

Bei der Messung mit steigendem Fehlerstrom können Sie zwischen den den Berührungsspannungsgrenzen $U_L = 25 \text{ V}$ und $U_I = 50 \text{ V/65 V wählen}.$

Messfunktion wählen




Anschluss




Parameter einstellen für I_F

Messung starten

30mA

RCD

BAT SSS

Messablauf

Nachdem der Messablauf gestartet ist, steigt der vom Gerät erzeugte Prüfstrom vom 0,3-fachen Nennfehlerstrom stetig an, bis der RCD-Schutzschalter auslöst. Dies kann an der fortschreitenden Füllung des Dreiecks bei l∆ beobachtet werden.

Erreicht die Berührungsspannung den gewählten Grenzwert (U₁ = 65 V, 50 V bzw. 25 V), bevor der RCD-Schutzschalter auslöst, dann wird eine Sicherheitsabschaltung ausgelöst. Die LED U_L/R_L leuchtet rot.

Hinweis

Sicherheitsabschaltung: Bis 70 V erfolgt die Sicherheitsabschaltung innerhalb von 3 s nach IEC 61010.

Löst der RCD-Schutzschalter nicht aus, bevor der ansteigende Strom den Nennfehlerstrom I_{AN} erreicht, dann leuchtet die LED RCD/FI rot.

Achtung!

Ein Vorstrom in der Anlage wird bei der Messung dem Fehlerstrom, der vom Gerät erzeugt wird, überlagert und beeinflusst die gemessenen Werte von Berührungsspannung und Auslösestrom. Siehe auch Kap. 7.1.

Beurteilung

Zur Beurteilung einer Fehlerstrom-Schutzeinrichtung muss jedoch gemäß DIN VDE 0100-600 mit ansteigendem Fehlerstrom gemessen und aus den gemessenen Werten die Berührungsspannung für den Nennfehlerstrom $I_{\Delta N}$ berechnet werden. Die schnellere und einfachere Messmethode siehe Kapitel 7.1 ist aus diesen Gründen vorzuziehen.

Prüfen von Anlagen bzw. RCD-Schutzschaltern 7.2.2 mit ansteigendem Fehlerstrom (Gleichstrom) für RCDs vom Typ B/B+ und EV/MI (nur MTECH+, MXTRA & SECULIFE IP)

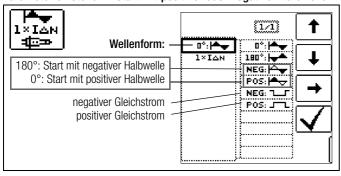
Gem. VDE 0413-6 muss nachgewiesen werden, dass bei glattem Gleichstrom der Auslösefehlerstrom höchstens den zweifachen Wert des Bemessungsfehlerstroms $I_{\Lambda N}$ annimmt. Dazu muss ein kontinuierlich ansteigender Gleichstrom, beginnend mit dem 0,2fachen des Bemessungsfehlerstroms $I_{\Delta N}$, angelegt werden. Steigt der Strom linear an, darf der Anstieg den 2-fachen Wert von I_{AN} innerhalb von 5 s nicht übersteigen.

Die Überprüfung mit geglättetem Gleichstrom muss in beiden Richtungen des Prüfstroms möglich sein.

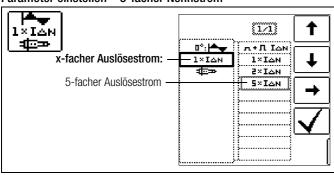
Prüfen von RCD-Schutzschaltern mit 5 ● I_{∧N} 7.2.3

Die Messung der Auslösezeit erfolgt hier mit 5-fachem Nennfehlerstrom.

Hinweis

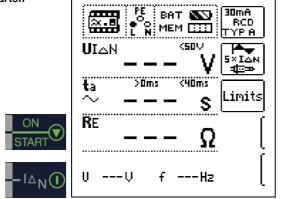

Messungen mit 5-fachem Nennfehlerstrom werden für die Fertigungsprüfung von RCD-Schutzschalter S und G gefordert. Darüber hinaus werden diese beim Personenschutz angewandt.

Sie haben die Möglichkeit die Messung bei der positiven Halbwelle "0° " oder bei der negativen Halbwelle "180° " zu starten. Nehmen Sie beide Messungen vor. Die längere Abschaltzeit ist das Maß für den Zustand des geprüften RCD-Schutzschalters. Beide Werte müssen < 40 ms sein.


Messfunktion wählen

Parameter einstellen – Start mit positiver oder negativer Halbwelle

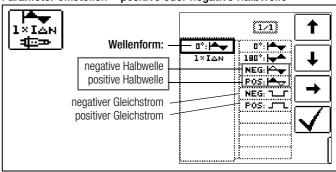
Parameter einstellen – 5-facher Nennstrom



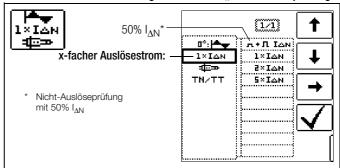
Hinweis

Es gelten folgende Einschränkungen bei der Auswahl der x-fachen Auslöseströme in Abhängigkeit vom Nennstrom: 500 mA: 1 x, 2 x I_{AN}

Messung starten


7.2.4 Prüfen von RCD-Schutzschaltern, die für pulsierende Gleichfehlerströme geeignet sind

Hierzu können die RCD-Schutzschalter mit positiven oder negativen Halbwellen geprüft werden. Die Auslösung erfolgt normgerecht mit 1,4-fachem Nennstrom.


Messfunktion wählen

Parameter einstellen – positive oder negative Halbwelle

Parameter einstellen – Prüfung mit und ohne "Nichtauslöseprüfung"

Nicht-Auslöseprüfung

Falls der RCD beim 1 s dauernden Nichtauslösetest mit 50% $I_{\Delta N}$ zu früh, d. h. vor der eigentlichen Auslöseprüfung auslöst, erscheint das nebenstehende Pop-Up:

Hinweis

Es gilt folgende Einschränkung bei der Auswahl der x-fachen Auslöseströme in Abhängigkeit vom Nennstrom: doppelter und fünffacher Nenntrom ist hier nicht möglich.

Hinweis

Nach DIN EN 50178 (VDE 160) müssen bei Betriebsmitteln > 4 kVA, die glatte Gleichfehlerströme erzeugen können (z. B. Frequenzumrichter) RCD-Schutzschalter Typ B (allstromsensitive) verwendet werden.

Für die Prüfungen von diesen Schutzschaltern ist eine Prüfung nur mit pulsierenden Gleichfehlerströmen ungeeignet. Hier muss auch mit glattem Gleichfehlerstrom aeprüft werden.

Hinweis 4

Bei der Fertigungsprüfung von RCD-Schaltern wird mit positiven und negativen Halbwellen gemessen. Wird ein Stromkreis mit pulsierendem Gleichstrom belastet, so kann die Funktion des RCD-Schutzschalters mit dieser Prüfung durchgeführt werden, um sicherzustellen, dass der RCD-Schalter durch den pulsierenden Gleichstrom nicht in die Sättigung gefahren wird und somit nicht mehr auslöst.

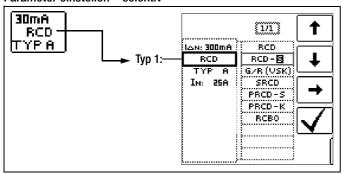
7.3 Prüfen spezieller RCD-Schutzschalter

7.3.1 Anlagen mit selektiven RCD-Schutzschaltern vom Typ RCD-S

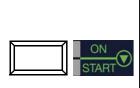
In Anlagen in denen zwei in Serie geschaltete RCD-Schutzschalter eingesetzt werden, die im Fehlerfall nicht gleichzeitig auslösen sollen, verwendet man selektive RCD-Schutzschalter. Diese haben ein verzögertes Ansprechverhalten und werden mit dem Symbol S gekennzeichnet.

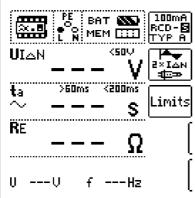
Messverfahren

Das Messverfahren entspricht dem für normale RCD-Schutzschalter (siehe Kapitel 7.1 auf Seite 18 und 7.2.1 auf Seite 20).


Werden selektive RCD-Schutzschalter verwendet, dann darf der Erdungswiderstand nur halb so groß sein wie der beim Einsatz von normalen RCD-Schutzschaltern.

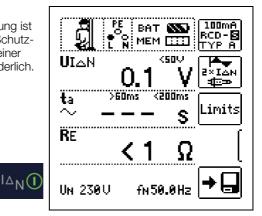
Das Gerät zeigt aus diesem Grunde den doppelten Wert der gemessenen Berührungsspannung an.


Messfunktion wählen



Parameter einstellen - selektiv

Messung starten



Auslöseprüfung

Drücken Sie die Taste I_{AN}. Der RCD-Schutzschalter wird ausgelöst. Im Anzeigefeld werden blinkende Balken und danach die Auslösezeit t_A und der Erdungswiderstand R_F angezeigt.

Die Auslöseprüfung ist für jeden RCD-Schutzschalter nur an einer Messstelle erforderlich.

Selektive RCD-Schutzschalter haben ein verzögertes Abschaltverhalten. Durch die Vorbelastung bei der Messung der Berührungsspannung wird das Abschaltverhalten kurzzeitig (bis zu 30 s) beeinflusst. Um die Vorbelastung, durch die Messung der Berührungsspannung zu eliminieren, ist vor der Auslöseprüfung eine Wartezeit notwendig. Nach dem Starten des Messablaufes (Auslöseprüfung) werden für ca. 30 s blinkende Balken dargestellt. Auslösezeiten bis 1000 ms sind zulässig. Durch nochmaliges Drücken der Taste I_{AN} wird die Auslöseprü-

7.3.2 PRCDs mit nichtlinearen Elementen vom Typ PRCD-K

fung sofort durchgeführt.

Der PRCD-K ist eine, als Schnurzwischengerät allpolig (L/N/PE) schaltende, ortsveränderliche Differenzstromeinrichtung mit elektronischer Fehlerstromauswertung. Zusätzlich ist im PRCD-K eine Unterspannungsauslösung und Schutzleiterüberwachung integriert

Der PRCD-K hat eine Unterspannungsauslösung und muss deshalb an Netzspannung betrieben werden, die Messungen sind nur im eingeschalteten Zustand (PRCD-K schaltet allpolig) durchzuführen.

Begriffe (aus DIN VDE 0661)

Ortsveränderliche Schutzeinrichtungen sind Schutzschalter, die über genormte Steckvorrichtungen zwischen Verbrauchergeräte und eine fest installierte Steckdose geschaltet werden können. Eine wiederanschließbare, ortsveränderliche Schutzeinrichtung ist eine Schutzeinrichtung, die so gebaut ist, dass sie den Anschluss an bewegliche Leitungen erlaubt.

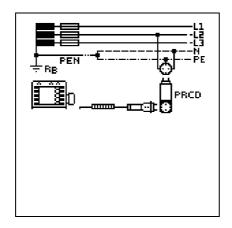
Bitte beachten Sie, dass bei ortsveränderlichen RCDs in der Regel ein nichtlineares Element im Schutzleiter eingebaut ist, das bei einer $U_{l\Delta}$ -Messung sofort zu einer Überschreitung der höchstzulässigen Berührungsspannung führt (U $_{l\Delta}$ größer 50 V). Ortsveränderliche RCDs, die kein nichtlineares Element im Schutzleiter besitzen, müssen gemäß Kap. 7.3.3 auf Seite 23

geprüft werden.

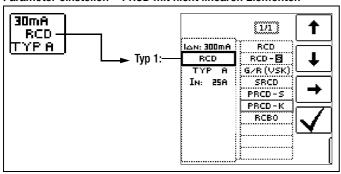
Zweck (aus DIN VDE 0661)

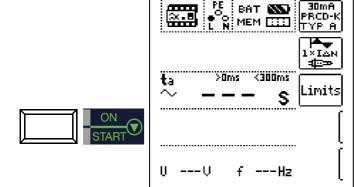
Die ortsveränderlichen Schutzeinrichtungen (PRCDs) dienen dem Schutz von Personen und Sachen. Durch sie kann eine Schutzpegelerhöhung der in elektrischen Anlagen angewendeten Schutzmaßnahmen gegen elektrischen Schlag im Sinne von DIN VDE 0100-410 erreicht werden. Sie sind so zu gestalten, dass sie durch einen unmittelbar angebauten Stecker an der Schutzvorrichtung bzw. über einen Stecker mit kurzer Zuleitung betrieben werden.

Messverfahren


Je nach Messverfahren können gemessen werden:

- die Auslösezeit t_A bei Auslöseprüfung mit Nennfehlerstrom I_{AN} (der PRCD-K muss bereits bei halbem Nennstrom auslösen)
- der Auslösestrom ${\rm I}_{\Delta}$ bei Prüfung mit steigendem Fehlerstrom ${\rm I}_{\rm F}$


Messfunktion wählen


Anschluss

Parameter einstellen - PRCD mit nicht linearen Elementen

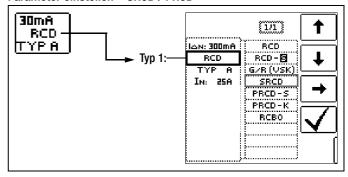
Messung starten

SRCD, PRCD-S (SCHUKOMAT, SIDOS oder ähnliche) 7.3.3

RCD-Schutzschalter der Serie SCHUKOMAT, SIDOS oder solche, die elektrisch baugleich mit diesen sind, müssen nach entsprechender Parameterauswahl geprüft werden.

Bei RCD-Schutzschaltern dieser Typen findet eine Überwachung des PE-Leiters statt. Dieser ist mit in den Summenstromwandler einbezogen. Bei einem Fehlerstrom von L nach PE ist deshalb der Auslösestrom nur halb so hoch, d. h. der RCD muss bereits beim halben Nennfehlerstrom $I_{\Delta N}$ auslösen.

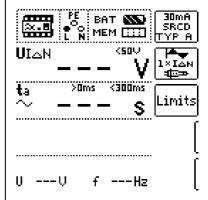
Die Baugleichheit von ortsveränderlichen RCDs mit SRCDs kann durch Messung der Berührungsspannung $U_{I\Delta N}$ überprüft werden. Wird eine Berührspannung U_{IAN} in einer ansonsten intakten Anlage am PRCD > 70 V angezeigt, so liegt mit großer Wahrscheinlichkeit ein PRCD mit nichtlinearem Element vor.


PRCD-S

PRCD-S (Portable Residual Current Device - Safety) ist eine spezielle ortsveränderliche Schutzeinrichtung mit Schutzleitererkennung bzw. Schutzleiterüberwachung. Das Gerät dient dem Schutz von Personen vor Elektrounfällen im Niederspannungsbereich (130 ... 1000 V). Ein PRCD-S muss für den gewerblichen Einsatz geeignet sein und wird wie ein Verlängerungskabel zwischen einen elektrischen Verbraucher - i. d. R. ein Elektrowerkzeug - und einer Steckdose installiert.

Messfunktion wählen

Parameter einstellen - SRCD / PRCD

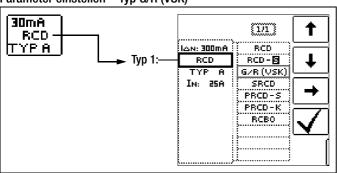


Messung starten

30mA

BAT (SSS)

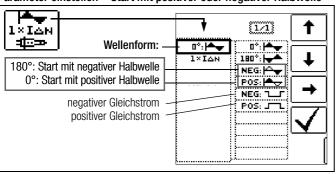
7.3.4 RCD-Schalter des Typs G oder R

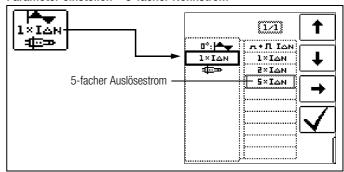

Mithilfe des Prüfgerätes ist es möglich, neben den üblichen und selektiven RCD-Schutzschaltern die speziellen Eigenschaften eines G-Schalters zu überprüfen.

Der G-Schalter ist eine österreichische Besonderheit und entspricht der Gerätenorm ÖVE/ÖNORM E 8601. Durch seine höhere Stromfestigkeit und Kurzzeitverzögerung werden Fehlauslösungen minimiert.

Messfunktion wählen

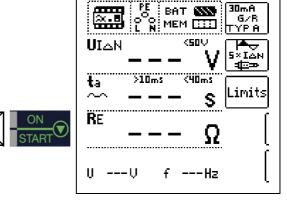
Parameter einstellen – Typ G/R (VSK)


Berührungsspannung und Auslösezeit können mittels G/R-RCD-Schalter-Einstellung gemessen werden.


Bei der Messung der Auslösezeit bei Nennfehlerstrom ist darauf zu achten, dass bei G-Schaltern Auslösezeiten von bis zu 1000 ms zulässig sind. Stellen Sie den entsprechenden Grenzwert ein.

Stellen Sie anschließend im Menü 5 x $I_{\Delta N}$ ein (wird bei der Auswahl von G/R automatisch eingestellt) und wiederholen Sie die Auslöseprüfung beginnend mit der positiven Halbwelle 0° und der negativen Halbwelle 180°. Die längere Abschaltzeit ist das Maß für den Zustand des geprüften RCD-Schutzschalters.

Parameter einstellen – Start mit positiver oder negativer Halbwelle

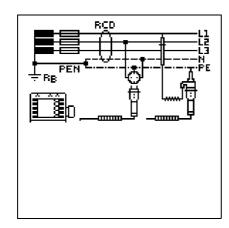

Parameter einstellen – 5-facher Nennstrom

Hinweis

Es gelten folgende Einschränkungen bei der Auswahl der x-fachen Auslöseströme in Abhängigkeit vom Nennstrom: 500 mA: 1 x, $2x I_{\Lambda N}$

Messung starten

Die Auslösezeit muss in beiden Fällen zwischen 10 ms (Mindestverzögerungszeit des G-Schalters!) und 40 ms liegen. G-Schalter mit anderen Nennfehlerströmen messen Sie mit der entsprechenden Parametereinstellung im Menüpunkt $I_{\Lambda N}$. Auch


hier müssen Sie den Grenzwert entsprechend einstellen.

Hinweis

Die Parametereinstellung RCD S für selektive Schalter ist für G-Schalter nicht geeignet.

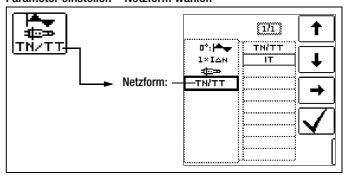
7.4 Prüfen von Fehlerstrom (RCD-) Schutzschaltungen in TN-S-Netzen

Anschluss

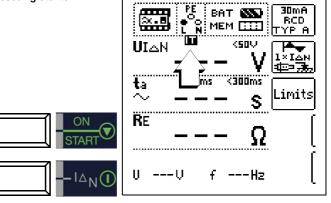
Ein RCD-Schalter kann nur in einem TN-S-Netz eingesetzt werden. In einem TN-C-Netz würde ein RCD-Schalter nicht funktionieren, da der PE nicht am RCD-Schalter vorbei geführt ist, sondern direkt in der Steckdose mit dem N-Leiter verbunden ist. So würde ein Fehlerstrom durch den RCD-Schalter zurückfließen und keinen Differenzstrom erzeugen, der zum Auslösen des RCD-Schalters führt.

Die Anzeige der Berührungsspannung wird in der Regel ebenfalls 0,1 V sein, da der Nennfehlerstrom von 30 mA zusammen mit dem niedrigen Schleifenwiderstand eine sehr kleine Spannung ergibt:

$$UI\Delta N = R_{E} \bullet I\Delta N = 1\Omega \cdot 30mA = 30mV = 0,03V$$


7.5 Prüfen von Fehlerstrom (RCD-) Schutzschaltungen in IT-Netzen mit hoher Leitungskapazität (z. B. in Norwegen)

Bei den RCD-Prüfungen U $_{\text{I}\Delta N}$ (I $_{\Delta N}$, t $_{a}$) und der Erdungsmessung (R $_{\text{E}}$) kann die Netzform (TN/TT oder IT) eingestellt werden.


Bei Messung im IT-Netz ist eine Sonde zwingend erforderlich, da die auftretende Berührspannung $U_{I\Delta N}$ ohne Sonde nicht gemessen werden kann.

Wird auf IT-Netz umgestellt, so wird automatisch die Anschlussart mit Sonde ausgewählt.

Parameter einstellen - Netzform wählen

Messung starten

8 Prüfen der Abschaltbedingungen von Überstrom-Schutzeinrichtungen, Messen der Schleifenimpedanz und Ermitteln des Kurzschlussstromes (Funktion Z_{I-PF} und I_K)

Das Prüfen von Überstrom-Schutzeinrichtungen umfasst Besichtigen und Messen. Zum Messen verwenden Sie den PROFITEST MASTER oder SECULIFE IP.

Messverfahren

Die Schleifenimpedanz $Z_{L\text{-PE}}$ wird gemessen und der Kurzschlussstrom I_K wird ermittelt, um zu prüfen, ob die Abschaltbedingungen der Schutzeinrichtungen eingehalten werden. Die Schleifenimpedanz ist der Widerstand der Stromschleife (EVU-Station - Außenleiter - Schutzleiter) bei einem Körper-

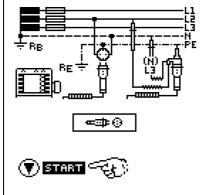
schluss (leitende Verbindung zwischen Außenleiter und Schutzleiter). Der Wert der Schleifenimpedanz bestimmt die Größe des Kurzschlussstromes. Der Kurzschlussstrom I_K darf einen nach DIN VDE 0100 festgelegten Wert nicht unterschreiten, damit die Schutzeinrichtung einer Anlage (Sicherung, Sicherungsautomat) sicher abschaltet.

Aus diesem Grunde muss der gemessene Wert der Schleifenimpedanz kleiner sein als der maximal zulässige Wert.

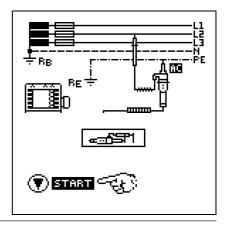
Tabellen über die zulässigen Anzeigewerte für die Schleifenimpedanz sowie die Kurzschlussstrom-Mindestanzeigewerte für die Nennströme verschiedener Sicherungen und Schalter finden Sie in den Hilfe-Seiten sowie im Kap. 21 ab Seite 88. In diesen Tabellen ist der max. Gerätefehler gemäß VDE 0413 berücksichtigt. Siehe auch Kapitel 8.2.

Um die Schleifenimpedanz $Z_{L\text{-PE}}$ zu messen, misst das Gerät, abhängig von der anliegenden Netzspannung und Netzfrequenz, mit einem Prüfstrom von 3,7 A bis 7 A (60 ... 550 V) und einer Prüfdauer von max. 1200 ms bei 16 Hz.

Tritt während dieser Messung eine gefährliche Berührungsspannung (> 50 V) auf, dann erfolgt Sicherheitsabschaltung.


Aus der gemessenen Schleifenimpedanz Z_{L-PE} und der Netzspannung errechnet das Mess- und Prüfgerät den Kurzschlussstrom I_K. Bei Netzspannungen, die innerhalb der Nennspannungsbereiche für die Netz-Nennspannungen 120 V, 230 V und 400 V liegen, wird der Kurzschlussstrom auf diese Nennspannungen bezogen. Liegt die Netzspannung außerhalb dieser Nennspannungsbereiche, dann errechnet das Gerät den Kurzschlussstrom \mathbf{I}_{K} aus der anliegenden Netzspannung und der gemessenen Schleifenimpedanz Z_{L-PE}.

Messfunktion wählen



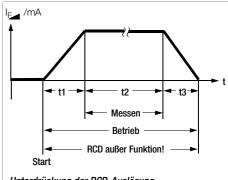
Anschluss Schuko/3-Pol-Adapter

Anschluss 2-Pol-Adapter

Hinweis

Der Schleifenwiderstand sollte je Stromkreis an der entferntesten Stelle gemessen werden, um die maximale Schleifenimpedanz der Anlage zu erfassen.

Beachten Sie die nationalen Vorschriften, z. B. die Notwendigkeit der Messung über RCD-Schalter hinweg in Österreich


Drehstromanschlüsse

Bei Drehstromanschlüssen muss zur einwandfreien Kontrolle der Überstrom-Schutzeinrichtung die Messung der Schleifenimpedanz mit allen drei Außenleitern (L1, L2, und L3) gegen den Schutzleiter PE ausgeführt werden.

8.1 Messungen mit Unterdrückung der RCD-Auslösung

Die Prüfgeräte PROFITEST MTECH+, PROFITEST MXTRA und SECULIFE IP ermöglichen die Messung der Schleifenimpedanz in TN-Netzen mit RCD-Schaltern vom Typ A, F A und AC (10/30/100/300/500 mA Nennfehlerstrom).

Das Prüfgerät erzeugt hierzu einen Gleichstrom, der den magnetischen Kreis des RCD-Schalters in Sättigung bringt. Mit dem Prüfgerät wird dann ein Messstrom überlagert, der nur Halbwellen der gleichen Polarität besitzt. Der RCD-Schalter kann diesen Messstrom dann nicht mehr

Unterdrückung der RCD-Auslösung bei pulsstromsensitiven RCD-Schutzschaltern ≅

erkennen und löst folglich während der Messung nicht mehr aus. Die Messleitung vom Gerät zum Prüfstecker ist in Vierleitertechnik ausgeführt. Die Widerstände der Anschlussleitung und des Messadapters werden bei einer Messung automatisch kompensiert und gehen nicht in das Messergebnis ein.

Hinweis

Eine Schleifenimpedanzmessung, die nach dem Verfahren der Unterdrückung der RCD-Auslösung erfolgt, ist nur mit RCDs vom Typ A und F möglich.

Hinweis

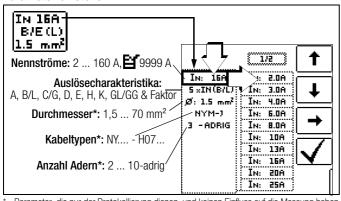
Vormagnetisierung

Über den 2-Pol-Adapter sind nur AC-Messungen vorgesehen. Eine Unterdrückung der RCD-Auslösung über eine Vormagnetisierung durch Gleichstrom ist nur über den länderspezifischen Steckereinsatz z. B. SCHUKO oder den 3-Pol-Adapter (N-Leiter erforderlich) möglich.

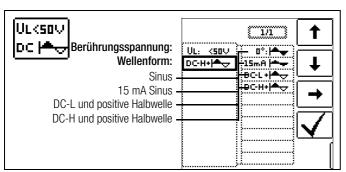
8.1.1 Messen mit positiven Halbwellen (MTECH+/MXTRA/SECULIFE IP)

Die Messung mit Halbwellen plus DC ermöglicht es, Schleifenimpedanzen in Anlagen zu messen, die mit RCD-Schutzschaltern ausgerüstet sind.

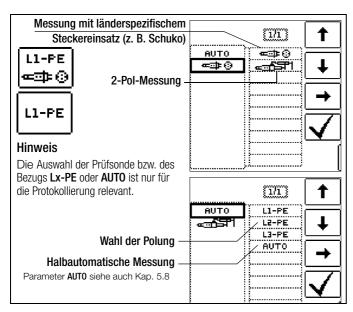
Bei der DC Messung mit Halbwellen können Sie zwischen zwei Varianten wählen:


DC-L: geringerer Vormagnetisierungsstrom, aber dafür schnellere Messung möglich

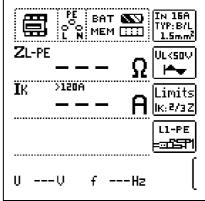
DC-H: höherer Vormagnetisierungsstrom und dafür größere Sicherheit hinsichtlich der RCD-Nichtauslösung.


Messfunktion wählen

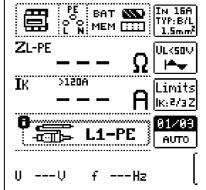
Parameter einstellen


^{*} Parameter, die nur der Protokollierung dienen, und keinen Einfluss auf die Messung haben

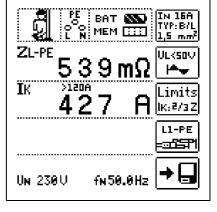
Sinus (Vollwelle) 15 mA Sinus Einstellung für Stromkreise ohne RCD Einstellung nur für Motorschutzschalter


mit kleinem Nennstrom

DC+Halbwelle Einstellung für Stromkreise mit RCD



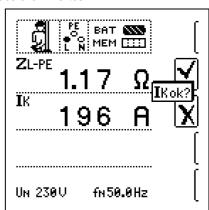
Messung starten

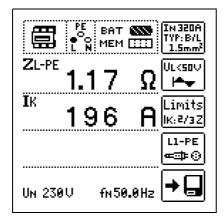


8.2 Beurteilung der Messwerte

Aus der Tabelle 1 auf Seite 88 können Sie die maximal zulässigen Schleifenimpedanzen Z_{L-PE} ermitteln, die unter Berücksichtigung der maximalen Betriebsmessabweichung des Gerätes (bei normalen Messbedingungen) angezeigt werden dürfen. Zwischenwerte können Sie interpolieren. Aus der Tabelle 6 auf Seite 80 können Sie

Aus der labelle 6 auf Seite 89 können Sie, aufgrund des gemesse-


nen Kurzschlussstromes, den maximal zulässigen Nennstrom des Schutzmittels (Sicherung bzw. Schutzschalter) für Netznennspannung 230 V, unter Berücksichtigung des maximalen Gebrauchsfehlers des Gerätes, ermitteln (entspricht DIN VDE 0100-600).

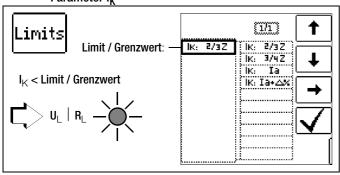

Sonderfall Ausblendung des Grenzwertes

Der Grenzwert ist nicht ermittelbar. Der Prüfer wird aufgefordert, die Messwerte selbst zu beurteilen und über die Softkeytasten zu bestätigen oder zu verwerfen. Messung bestanden:

Taste ✓ Messung nicht bestanden: Taste X

Erst nach Ihrer Beurteilung kann der Messwert gespeichert werden.

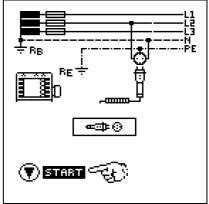
9 Messen der Netzimpedanz (Funktion Z_{I-N})


Messverfahren (Netzinnenwiderstandsmessung)

Die Netzimpedanz Z_{L-N} wird nach dem gleichen Messverfahren gemessen wie die Schleifenimpedanz $Z_{L\text{-PE}}$ (siehe Kapitel 8 auf Seite 26). Die Stromschleife wird hierbei über den Neutralleiter N gebildet und nicht wie bei der Schleifenimpedanzmessung über den Schutzleiter PE.

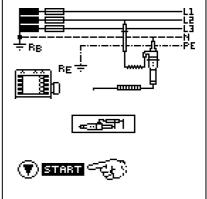
Messfunktion wählen

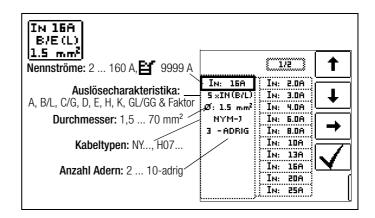
8.3 Einstellungen zur Kurzschlussstrom-Berechnung - Parameter I_K


Der Kurzschlussstrom I_K dient zur Kontrolle der Abschaltung einer Uberstrom-Schutzeinrichtung. Damit eine Uberstrom-Schutzeinrichtung rechtzeitig auslöst, muss der Kurzschlussstrom I_K größer als der Auslösestrom la sein (siehe Tabelle 6 Kap. 21.1). Die über die Taste "Limits" wählbaren Varianten bedeuten:

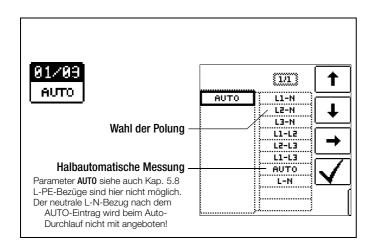
- zur Berechnung des I_K wird der angezeigte Messwert I_K: la von Z_{L-PE} ohne jegliche Korrekturen übernommen
- $\mbox{la+}\Delta\%$ zur Berechnung des $\mbox{l}_{\mbox{\scriptsize K}}$ wird der angezeigte Messwert von Z_{L-PE} um die Betriebsmessunsicherheit des Prüfgeräts korrigiert
- I_K: 2/3 Z zur Berechnung des I_K wird der angezeigte Messwert von $Z_{L\text{-PE}}$ um alle möglichen Abweichungen korrigiert (in der VDE 0100-600 werden diese detailliert als $Z_{s(m)} \leq 2/3 \times U_0/la \text{ definiert})$ I_K : 3/4 Z $Z_{s(m)} \leq 3/4 \times U_0/la$
- Im Prüfgerät errechneter Kurzschlussstrom (bei Nennspannung)
- Fehlerschleifenimpedanz Ζ
- Auslösestrom (siehe Datenblätter der Leitungsschutzschalter/Sicherungen)
- Δ% Eigenabweichung des Prüfgeräts

Sonderfall $I_k > I_{kmax}$ siehe Seite 29.

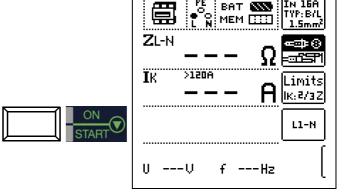

Anschluss Schuko

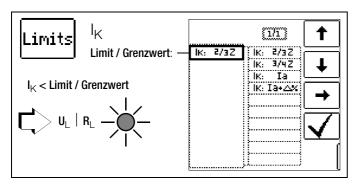


Anschluss 2-Pol-Adapter



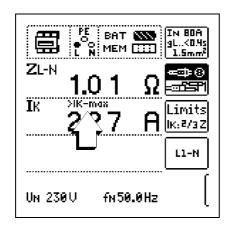
Parameter einstellen




Durch Drücken der nebenstehenden Softkey-Taste schalten Sie zwischen länderspezifischem Steckereinsatz z. B. SCHUKO und 2-Pol-Adapter um. Die gewählte Anschlussart wird invers dargestellt (weiß auf schwarz).

Messung starten

Einstellungen zur Kurzschlussstrom-Berechnung – Parameter I_K



Der Kurzschlussstrom I_K dient zur Kontrolle der Abschaltung einer Überstrom-Schutzeinrichtung. Damit eine Überstrom-Schutzeinrichtung rechtzeitig auslöst, muss der Kurzschlussstrom I_K größer als der Auslösestrom Ia sein (siehe Tabelle 6 Kap. 21.1). Die über die Taste "Limits" wählbaren Varianten bedeuten:

- $I_{\rm K}$: Ia zur Berechnung des $I_{\rm K}$ wird der angezeigte Messwert von $Z_{\rm L-PE}$ ohne jegliche Korrekturen übernommen
- I_{K} : I_{A} zur Berechnung des I_{K} wird der angezeigte Messwert von I_{L-PE} um die Betriebsmessunsicherheit des Prüfgeräts korrigiert
- I_{K} : 2/3 Z zur Berechnung des I_{K} wird der angezeigte Messwert von Z_{L-PE} um alle möglichen Abweichungen korrigiert (in der VDE 0100-600 werden diese detailliert als $Z_{s(m)} \leq 2/3 \times U_{0}$ /la definiert)
- I_{K} : 3/4 Z $Z_{s(m)} \le 3/4 \times U_{0}/Ia$
- I_K Im Prüfgerät errechneter Kurzschlussstrom (bei Nennspannung)
- Z Fehlerschleifenimpedanz
- la Auslösestrom (siehe Datenblätter der Leitungsschutzschalter/Sicherungen)
- Δ% Eigenabweichung des Prüfgeräts

Sonderfall $I_k > I_{kmax}$

Liegt der Wert des Kurzschlussstroms außerhalb der im PROFITEST MASTER definierten Messwerte, wird dies durch ">IK-max" angezeigt. Für diesen Fall ist eine manuelle Bewertung des Messergebnisses erforderlich.

ZL-N 1.16 Ω IK >120A 1.99 A Limits L1-H Un 230U fn50.0Hz

BAT SSS

MEM []]

Anzeige von U_{L-N} (U_N / f_N)

Liegt die gemessene Spannung im Bereich von $\pm 10\%$ um die jeweilige Netznennspannung von 120 V, 230 V oder 400 V, so wird jeweils die entsprechende Netznennspannung angezeigt. Bei Messwerten außerhalb der $\pm 10\%$ -Toleranzgrenze wird jeweils der tatsächliche Messwert angezeigt.

Sicherungstabelle aufrufen

Nach Durchführen der Messung werden die zulässigen Sicherungstypen auf Anforderung durch die Taste HELP angezeigt. Die Tabelle zeigt den maximal zulässigen Nennstrom in Abhängigkeit von Sicherungstyp und Abschaltbedingungen.

Ik: 199 A					
A : B/L: E : C/G:	IK: IN 40A 25A 20A 13A	2/3Z gL/gG ← <5s: <0.4s: <0.2s: <1s:	IN 25A 16A 16A 20A		
D : K : H :	6.0A 8.0A 50A				

Legende: la Abschaltstrom, \mathbf{I}_{K} Kurzschlussstrom, \mathbf{I}_{N} Nennstrom tA Auslösezeit

10 Messen des Erdungswiderstandes (Funktion R_F)

Der Erdungswiderstand R_F ist für die automatische Abschaltung in Anlagenteilen von Bedeutung. Er muss niederohmig sein, damit im Fehlerfall ein hoher Kurzschlussstrom fließt und so die Fehlerstromschutzschalter die Anlage sicher abschalten.

Messaufbau

Der Erdungswiderstand (RF) ist die Summe aus dem Ausbreitungswiderstand des Erders und dem Widerstand der Erdungsleitung. Der Erdungswiderstand wird gemessen, in dem man über den Erdungsleiter, den Erder und den Erdausbreitwiderstand einen Wechselstrom leitet. Dieser Strom und die Spannung zwischen Erder und einer Sonde werden gemessen.

Die Sonde wird über einen berührungsgeschützten Stecker von 4 mm Durchmesser an der Sondenanschlussbuchse (17) angeschlossen.

Direkte Messung mit Sonde (netzbetriebene Erdungsmessung)

Die direkte Messung des Erdungswiderstandes R_F ist nur in einer Messschaltung mit Sonde möglich. Das setzt jedoch voraus, dass die Sonde das Potenzial der Bezugserde hat, d. h., dass sie außerhalb des Spannungstrichters des Erders gesetzt wird. Der Abstand zwischen Erder und Sonde soll mindestens 20 m sein.

Messung ohne Sonde (netzbetriebene Erdungsmessung)

In vielen Fällen, besonders in Gebieten mit enger Bebauung, ist es schwierig oder sogar unmöglich, eine Messsonde zu setzen. Sie können den Erdungswiderstand in diesen Fällen auch ohne Sonde ermitteln. Allerdings sind die Widerstandswerte des Betriebserders R_B und des Außenleiters L dann im Messergebnis enthalten.

Messverfahren (mit Sonde) (netzbetriebene Erdungsmessung)

Das Gerät misst den Erdungswiderstand R_F nach dem Strom-Spannungs-Messverfahren.

Der Widerstand RF wird hierbei aus dem Quotienten von Spannung U_E und Strom I_E berechnet, wobei U_E zwischen Erder und Sonde liegt.

Der Messstrom, der dabei durch den Erdungswiderstand fließt, wird vom Gerät gesteuert, Werte hierzu siehe Kap. 19 "Technische Kennwerte" ab Seite 82.

Es wird ein Spannungsabfall erzeugt, der dem Erdungswiderstand proportional ist.

Hinweis

Die Widerstände der Messleitung und des Messadapters werden bei der Messung automatisch kompensiert und gehen nicht in das Messergebnis ein.

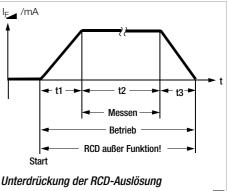
Treten während der Messungen gefährliche Berührungsspannungen (> 50 V) auf, so wird die Messung abgebrochen und es erfolgt eine Sicherheitsabschaltung.

Der Sondenwiderstand geht nicht in das Messergebnis ein und kann maximal 50 k Ω betragen.

Achtung!

Die Sonde ist Teil des Messkreises und kann nach VDE 0413 einen Strom bis maximal 3,5 mA führen.

Messung mit oder ohne Erderspannung in Abhängigkeit von der Parametereingabe bzw. Wahl der Anschlussart:


RANGE	Anschluss	Messfunktionen	
xx Ω / xx kΩ	(2-P) ==155°	keine Sondenmessung keine Messung U _E	
10 Ω / U _E * 3-P-GF+		Sondenmessung aktiviert U _E wird gemessen	
xx Ω / xx kΩ *	3-P近 2 +沸	Sondenmessung aktiviert keine Messung U _E	
XX 12 / XX K12	SELIG-P (A)	Zangenmessung aktiviert keine Messung U _E	

dieser Parameter führt zur automatischen Einstellung auf Sondenanschluss

Messverfahren mit Unterdrückung der RCD-Auslösung (netzbetriebene Erdunasmessuna)

Die Prüfgeräte PROFITEST MTECH+, PROFITEST MXTRA und SECULIFE IP ermöglichen die Messung des Erdungswiderstands in TN-Netzen mit RCD-Schaltern vom Typ A, F \sum und AC \subseteq (10/30/100/300/500 mA Nennfehlerstrom).

Das Prüfgerät erzeugt hierzu einen Gleichstrom, der den magnetischen Kreis des RCD-Schalters in Sättigung bringt. Mit dem Prüfgerät wird dann ein Messstrom überlagert, der nur Halbwellen der gleichen Polarität besitzt. Der RCD-Schalter kann diesen Messstrom dann nicht

bei pulsstromsensitiven RCD-Schutzschaltern □

mehr erkennen und löst folglich während der Messung nicht mehr

Die Messleitung vom Gerät zum Prüfstecker ist in Vierleitertechnik ausgeführt. Die Widerstände der Anschlussleitung und des Messadapters werden bei einer Messung automatisch kompensiert und gehen nicht in das Messergebnis ein.

Hinweis

Vormagnetisierung

Über den 2-Pol-Adapter sind nur AC-Messungen vorgesehen. Eine Unterdrückung der RCD-Auslösung über eine Vormagnetisierung durch Gleichstrom ist nur über den länderspezifischen Steckereinsatz z. B. SCHUKO oder den 3-Pol-Adapter (N-Leiter erforderlich) möglich.

Grenzwerte

Der Erdungswiderstand (Erdankoppelwiderstand) wird hauptsächlich bestimmt durch die Kontaktfläche der Elektrode und der Leitfähigkeit des umgebenden Erdreichs.

Der geforderte Grenzwert hängt von der Netzform und dessen Abschaltbedingungen unter Berücksichtigung der maximalen Berührungsspannung ab.

Beurteilung der Messwerte

Aus der Tabelle 2 auf Seite 88 können Sie die Widerstandswerte ermitteln, die unter Berücksichtigung des maximalen Gebrauchsfehlers des Gerätes (bei Nenngebrauchsbedingungen) höchstens angezeigt werden dürfen, um einen geforderten Erdungswiderstand nicht zu überschreiten. Zwischenwerte können interpoliert werden.

10.1 Erdungswiderstandsmessung – netzbetrieben

Folgende drei Messarten bzw. Anschlüsse sind möglich:

2-Pol-Messung über 2-Pol-Adapter

2-Pol-Messung über Schukostecker (nicht im IT-Netz möglich)

3-P近2+系

3-Pol-Messung über 2-Pol-Adapter und Sonde

SEL 3-P A

selektive Messung: 2-Pol-Messung mit Sonde und Zangenstromsensor

Bild links:

Messadapter 2polig zum Abtasten der Messstellen PE und L

Bild rechts alternativ kann der Messadapter PRO-Schuko verwendet werden

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weiße Schrift mains~ auf schwarzem Hintergrund.

Messart batteriebetrieben "Akkubetrieb" nicht möglich: Bei zur Betriebsart nicht passendem Anschluss wird die nebenstehende Fehlermeldung eingeblendet.

Sonderfall manuelle Messbereichswahl (Prüfstromauswahl)

 $(R \neq AUTO, R = 10 \text{ k}\Omega \text{ (4 mA)}, 1 \text{ k}\Omega \text{ (40 mA)}, 100 \Omega \text{ (0,4 A)},$ 10 Ω (3,7 ... 7 A), 10 Ω/U_F)

Hinweis

Bei manueller Bereichswahl ist darauf zu achten, dass die Genauigkeitsangaben erst ab 5% vom Bereichsendwert gelten (außer 10 Ω-Bereich; separate Angabe für kleine Werte).

Parameter einstellen

☐ Messhereich: AUTO

10 k Ω (4 mA), 1 k Ω (40 mA), 100 Ω (0,4 A), 10 Ω (> 3,7 A) Bei Anlagen mit RCD-Schutzschalter muss der Widerstand bzw. der Prüfstrom so gewählt werden, dass dieser unterhalb des Auslösestroms (½ $I_{\Delta N}$) liegt.

- \Box Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare Spannung siehe Kap. 5.7
- ☐ Wandlerübersetzung: in Abhänigkeit vom eingesetzten Zangen-
- ☐ Anschlussart: 2-Pol-Adapter, 2-Pol-Adapter + Sonde, 2-Pol-Adapter + Zange
- Netzform: TN oder TT
- Kurvenform Prüfstrom

Sinnvolle Parameter für die jeweilige Messart bzw. Anschlussart siehe Kapitel 10.4 bis Kapitel 10.6.

Messungen durchführen

Siehe Kapitel 10.4 bis Kapitel 10.6.

10.2 Erdungswiderstandsmessung – batteriebetrieben "Akkubetrieb" (nur MPRO & MXTRA)

Folgende fünf Messarten bzw. Anschlüsse sind möglich:

- 3-P: 3-Pol-Messung über Adapter PRO-RE
- 4-Pol-Messung über Adapter PRO-RE
- SEL: 4-P #1 selektive Messung mit Zange (4-Pol-Messung) über Adapter PRO-RE
- ②- 日本 日本 2-Zangen-Messung über Adapter PRO-RE/2
- 9_E dddd Bestimmung des spezifischen Widerstandes ρ_E über Adapter PRO-RE

Bild rechts:

Adapter PRO-RE zum Anschluss von Erder, Ersatzerder, Sonde und Hilfssonde an das Prüfgerät für 3-/4-Pol-Messung, selektive Messung und spezifische Widerstandsmessung

Bild rechts:

Messadapter PRO-RE/2 als Zubehör zum Anschluss der Generatorzange E-Clip 2 für die 2-Zangenbzw. Erdschleifenwiderstandsmessung.

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Messart netzbetrieben nicht möglich:

Bei zur Betriebsart nicht passendem Anschluss wird die nebenstehende Fehlermeldung eingeblendet.

Parameter einstellen

- \square Messbereich: AUTO, 50 k Ω , 20 k Ω , 2 k Ω , 200 Ω , 20 Ω
- Wandlerübersetzung Zangenstromsensor: 1:1 (1V/A,) 1:10 (100mV/A), 1:100 (10mV/A), 1:1000 (1mV/A)
- \square Anschlussart: 3-polig, 4-polig, selektiv, 2-Zangen, ρ_{F} (Rho)
- \Box Abstand d (für Messung ρ_F): xx m

Sinnvolle Parameter für die jeweilige Messart bzw. Anschlussart siehe Kapitel 10.7 bis Kapitel 10.11.

Messungen durchführen

Siehe Kapitel 10.7 bis Kapitel 10.11.

Erdungswiderstand netzbetrieben – 2-Pol-Messung mit 2-Pol-Adapter oder länderspezifischem Stecker (Schuko) ohne Sonde

Legende

 R_{B} Betriebserde

Erdungswiderstand R_{E}

 R_{i} Innenwiderstand

 R_{X} Erdungswiderstand durch Systeme des Potenzialaus-

aleichs

 R_S Sondenwiderstand

PAS Potenzialausgleichsschiene

RE Gesamterdungswiderstand (R_{E1}//R_{E2}//Wasserleitung)

In den Fällen, in denen es nicht möglich ist eine Sonde zu setzen, können Sie den Erdungswiderstand überschlägig durch eine "Erderschleifenwiderstandsmessung" ohne Sonde ermitteln.

Die Messung wird genauso ausgeführt wie im Kap. 10.4 "Erdungswiderstandsmessung netzbetrieben – 3-Pol-Messung: 2-Pol-Adapter mit Sonde" ab Seite 33 beschrieben. An der Sondenanschlussbuchse (17) ist jedoch keine Sonde angeschlossen. Der bei dieser Messmethode gemessene Widerstandwert $R_{\mbox{ESchl}}$ enthält auch die Widerstandswerte des Betriebserders RB und des Außenleiters L. Zur Ermittlung des Erdungswiderstandes sind diese beiden Werte vom gemessenen Wert abzuziehen.

Legt man gleiche Leiterguerschnitte (Außenleiter L und Neutralleiter N) zugrunde, so ist der Widerstand des Außenleiters halb so groß wie die Netzimpedanz Z_{L-N} (Außenleiter + Neutralleiter). Die Netzimpedanz können Sie, wie im Kap. 9 ab Seite 28 beschrieben, messen. Der Betriebserder R_B darf gemäß DIN VDE 0100 "0 Ω bis 2 Ω " betragen.

1) Messung: Z_{LN} entspricht $R_i = 2 \cdot R_L$

2) Messung:

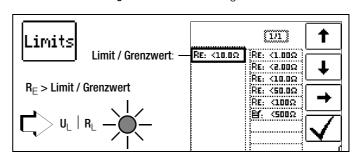
2) Messung: Z_{L-PE} entspricht R_{ESchl} 3) Berechnung: R_{E1} entspricht $Z_{L-PE} - 1/2 \cdot Z_{L-N}$; für $R_B = 0$

Bei der Berechnung des Erdungswiderstandes ist es sinnvoll den Widerstandswert der Betriebserde $R_{\mbox{\footnotesize{B}}}$ nicht zu berücksichtigen, da dieser Wert im Allgemeinen nicht bekannt ist.

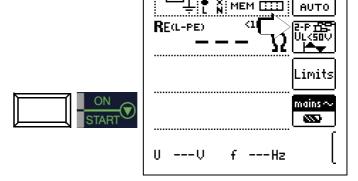
Der berechnete Widerstandswert beinhaltet dann als Sicherheitszuschlag den Widerstand der Betriebserde.

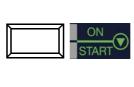
In der Parameterauswahl :2-P: - werden die Schritte 1) bis 3) vom Prüfgerät automatisch durchgeführt.

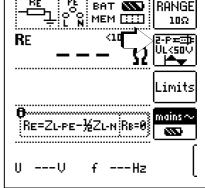
Messfunktion wählen

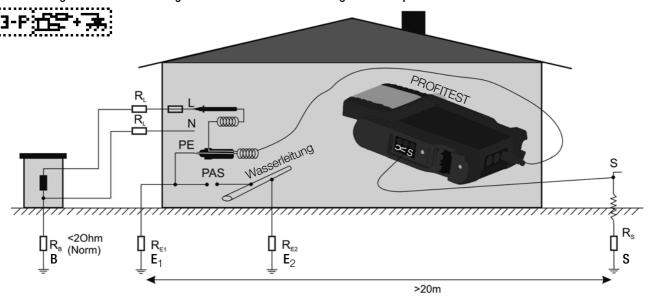


Betriebsart wählen




Parameter einstellen


- \square Messbereich: AUTO, 10 kΩ (4 mA), 1 kΩ (40 mA), 100 Ω (0,4 A), 10 Ω (3,7 ... 7 A). Bei Anlagen mit RCD-Schutzschalter muss der Widerstand bzw. der Prüfstrom so gewählt werden, dass dieser unterhalb des Auslösestroms (½ $I_{\Delta N}$) liegt.
- Anschlussart: 2-Pol-Adapter
- ☐ Berührungsspannung: UL < 25 V, < 50 V, < 65 V
- Wellenform Prüfstrom: Sinus (Vollwelle), 15 mA-Sinus (Vollwelle), DC-Offset und positive Halbwelle
- Netzform: TN/TT, IT
- Wandlerübersetzung: hier ohne Bedeutung



BAT

 \sim

RANGE

10.4 Erdungswiderstandsmessung netzbetrieben – 3-Pol-Messung: 2-Pol-Adapter mit Sonde

Legende

R_B Betriebserder

R_E Erdungswiderstand

R_X Erdungswiderstand durch Systeme des Potenzialaus-

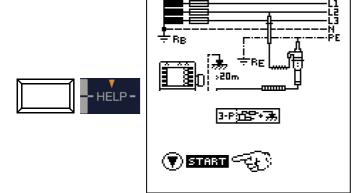
gleichs

R_S Sondenwiderstand

PAS Potenzialausgleichsschiene

RE Gesamterdungswiderstand (R_{E1}//R_{E2}//Wasserleitung)

Messung $R_E \left(R_{E1} = \frac{U_{Sonde}}{I} \right)$

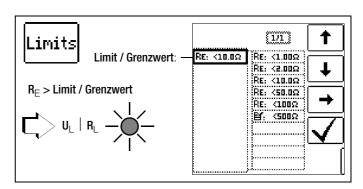

Messfunktion wählen

Betriebsart wählen

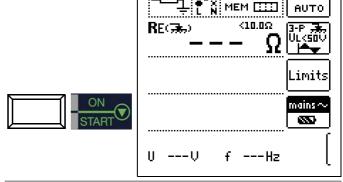
Anschluss

Angeschlossen werden: 2-Pol-Adapter und Sonde

Parameter einstellen

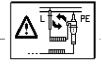

■ Messbereich: AUTO,

10 k Ω (4 mA), 1 k Ω (40 mA), 100 Ω (0,4 A), 10 Ω (3,7 ... 7 A) Bei Anlagen mit RCD-Schutzschalter muss der Widerstand bzw. der Prüfstrom so gewählt werden, dass dieser unterhalb des Auslösestroms (½ I_{AN}) liegt.


- ☐ Anschlussart: 2-Pol-Adapter + Sonde
- □ Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare Spannung siehe Kap. 5.7
- ☐ Wellenform Prüfstrom:

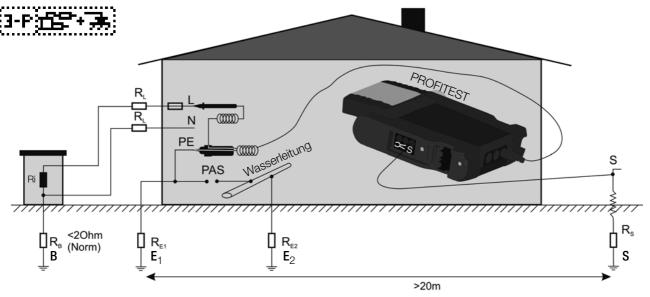
Sinus (Vollwelle), 15 mA-Sinus (Vollwelle), DC-Offset und positive Halbwelle

- Netzform: TN/TT, IT
- ☐ Wandlerübersetzung: hier ohne Bedeutung



Messung starten

Hinweis


Bei falschem Anschluss des 2-Pol-Adapters wird folgendes Diagramm eingeblendet.

BAT 쨃

RANGE

Erdungswiderstandsmessung netzbetrieben – Messen der Erderspannung (Funktion U_E)

Diese Messung ist nur mit Sonde möglich, siehe Kap. 10.4. Die Erderspannung U_{E} ist die Spannung die am Erder zwischen dem Erderanschluss und der Bezugserde auftritt, wenn zwischen Außenleiter und Erder ein Kurzschluss auftritt. Die Ermittlung der Erderspannung ist in der Schweizer Norm NIV/NIN SEV 1000 vorgeschrieben.

Messverfahren

Zur Ermittlung der Erderspannung misst das Gerät zunächst den Erder-Schleifenwiderstand R_{ESchl} , unmittelbar danach den Erdungswiderstand R_{E} . Das Gerät speichert beide Messwerte, errechnet daraus nach der Formel

$$U_E = \frac{U_N \cdot R_E}{R_{ESchl}}$$

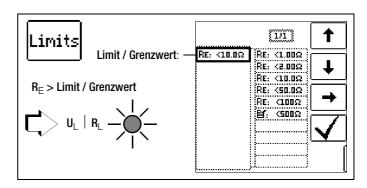
die Erderspannung und zeigt sie im Anzeigefeld an.

Messfunktion wählen

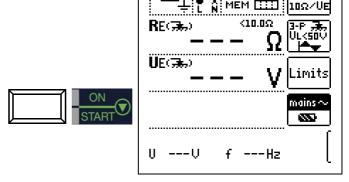
Betriebsart wählen

mains \sim SEC.

Messbereich wählen



Anschluss



Parameter einstellen

- \Box Messbereich: 10 Ω / \cup_E
- ☐ Anschlussart: 2-Pol-Adapter + Sonde
- ☐ Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare
- Spannung siehe Kap. 5.7
- ☐ Wellenform Prüfstrom: hier nur Sinus (Vollwelle)!
- □ Netzform: TN/TT, IT
- ☐ Wandlerübersetzung: hier ohne Bedeutung

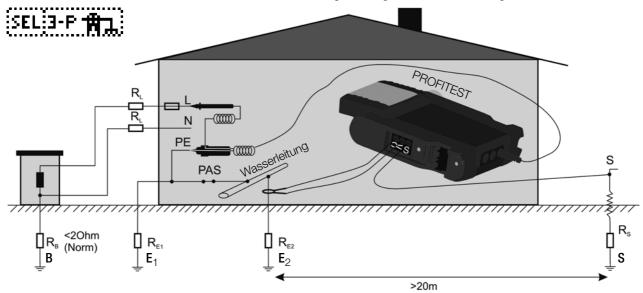
Messung starten

BAT 쨃

MEM [:::]

RANGE

Hinweis


Bei falschem Anschluss des 2-Pol-Adapters wird folgendes Diagramm eingeblendet.

Angeschlossen werden: 2-Pol-Adapter und Sonde

10.6 Erdungswiderstandsmessung netzbetrieben – Selektive Erdungswiderstandsmessung mit Zangenstromsensor als Zubehör

Alternativ zur klassischen Messmethode kann auch eine Messung mit Zangenstromsensor durchgeführt werden.

Legende

R_B Betriebserde

R_E Erdungswiderstand

R_I Leitungswiderstand

R_X Erdungswiderstand durch Systeme des Potenzialaus-

gleichs

R_S Sondenwiderstand

PAS Potenzialausgleichsschiene

RE__ Gesamterdungswiderstand (R_{E1} // R_{E2} // Wasserleitung)

Messung ohne Zange: $R_E = R_{E1} // R_{E2}$

Messung mit Zange: $R_E = R_{E2} = \left(\frac{U_{Sonde}}{I_{Zange}}\right)$

Messfunktion wählen

Betriebsart wählen

Anschluss

Angeschlossen werden: 2-Pol-Adapter, Zange und Sonde

Parameter einstellen am Prüfgerät

- Messbereich (Prüfstromauswahl):
 1 kΩ (40 mA), 100 Ω (0,4 A), 10 Ω (3,7 ... 7 A)
 Bei Anlagen mit RCD-Schutzschalter kann die Funktion
 DC-Offset und positive Halbwelle (DC + ♠) gewählt werden (nur im Bereich 10 Ω und nur mit METRAFLEX P300).
- Anschlussart: 2-Pol-Adapter + Zange nach Parameterauswahl: automatische Einstellung auf Messbereich 10 Ω und Wandlerübersetzung 1 V/A bzw. 1000 mV/A
- ullet Berührungsspannung: UL < 25 V, < 50 V, < 65 V, frei einstellbare Spannung siehe Kap. 5.7
- **□** Wellenform Prüfstrom:

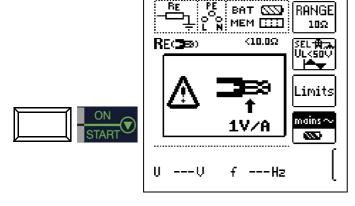
Sinus (Vollwelle), DC-Offset und positive Halbwelle (DC + ____)

- □ Netzform: TN/TT, IT
- ☐ Wandlerübersetzung Zangenstromsenor: siehe Tabelle unten

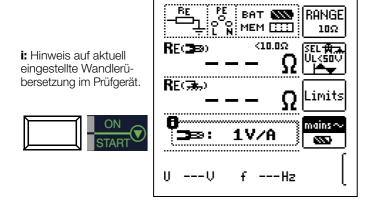
Parameter einstellen am Zangenstromsensor

☐ Messbereich Zangenstromsenor: siehe Tabelle unten

Messbereich am Zangenstromsensor wählen


Prüfgerät	Prüfgerät Zange METRAFLEX P300		
Parameter Wandler- übersetzung	Schalter	Mess- bereich	Mess- bereich
1:1 1 V / A	3 A (1 V/A)	3 A	0,5 100 mA
1:10 100 mV / A	30 A (100 mV/A)	30 A	5 999 mA
1:100 10 mV / A	300 A (10 mV/A)	300 A	0,05 10 A

Wichtige Hinweise für den Einsatz des Zangenstromsensors

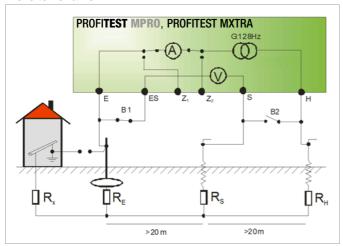

- Verwenden Sie für diese Messung ausschließlich den Zangenstromsensor METRAFLEX P300 oder die Z3512A.
- Lesen und beachten Sie unbedingt die Bedienungsanleitung zum Zangenstromsensor METRAFLEX P300 und die darin beschriebenen Sicherheitshinweise.
- Beachten Sie unbedingt die Stromrichtung, siehe Pfeil auf dem Zangenstromsensor.
- Betreiben Sie die Zange fest angeschlossen. Der Sensor darf während der Messung nicht bewegt werden.
- Der Zangenstromsensor darf nur bei ausreichendem Abstand von starken Fremdfeldern eingesetzt werden.
- Untersuchen Sie vor dem Einsatz immer das Elektronikgehäuse, das Verbindungskabel und den flexiblen Stromsensor auf Beschädigungen.

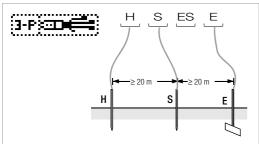
- Zur Vermeidung von elektrischem Schlag halten Sie die MET-RAFLEX sauber und frei von Verschmutzung der Oberfläche.
- Stellen Sie sicher, dass vor Verwendung der flexible Stromsensor, das Verbindungskabel und das Elektronikgehäuse trocken sind.

Messung starten

Sofern Sie die Wandlerübersetzung im Prüfgerät verändert haben, wird ein Popup-Fenster mit dem Hinweis eingeblendet, diese neue Einstellung auch am angeschlossenen Zangenstromsensor vorzunehmen.

 ${\rm RE}_{\rm Zange}$: selektiver Erdungswiderstand über Zange gemessen ${\rm RE}_{\rm Sonde}$: Gesamt-Erdungswiderstand über Sonde gemessen, Vergleichswert




Bei falschem Anschluss des 2-Pol-Adapters wird folgendes Diagramm eingeblendet.

10.7 Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – 3-polig (nur MPRO & MXTRA)

Dreileiterverfahren

Messung des Erdungswiderstandes nach dem Dreileiterverfahren

- Setzen Sie die Spieße für Sonde und Hilfserder in mindestens 20 m bzw. 40 m Entfernung vom Erder, siehe Bild oben.
- Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Prüfstecker.
- Schließen Sie die Sonde, Hilfserder und Erder über die 4-mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen! Der Anschluss ES/P1 bleibt frei.

Der Widerstand der Messleitung zum Erder geht unmittelbar in das Messergebnis ein.

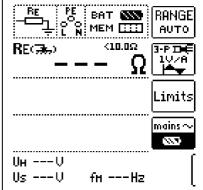
Um den Fehler, der durch den Widerstand der Messleitung verursacht wird, möglichst klein zu halten, sollten Sie bei diesem Messverfahren eine kurze Verbindungsleitung zwischen Erder und Anschluss "E" mit großem Querschnitt verwenden.

Hinweis

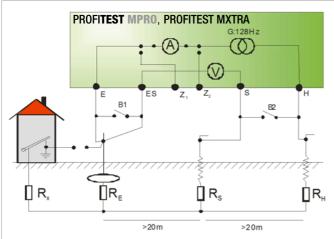
Um Nebenschlüsse zu vermeiden müssen die Messleitungen gut isoliert sein. Die Messleitungen sollten sich nicht kreuzen oder über lange Strecken parallel laufen, um den Einfluss von Verkopplungen auf ein Mindestmaß zu begrenzen.

Messfunktion wählen

Betriebsart wählen


Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen


- \Box Messbereich: AUTO, 50 k Ω , 20 k Ω , 2 k Ω , 200 Ω , 20 Ω
- ☐ Anschlussart: 3-polig
- ☐ Wandlerübersetzung: hier ohne Bedeutung
- \square Abstand d (für Messung ρ_F): hier ohne Bedeutung

Messung starten

Vierleiterverfahren

Das Vierleiterverfahren wird eingesetzt bei einem hohen Zuleitungswiderstand vom Erder zum Geräteanschluss.

Bei dieser Schaltung wird der Widerstand der Zuleitung vom Erder zur Klemme "E" des Gerätes nicht mitgemessen.

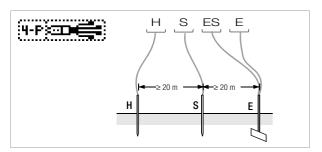
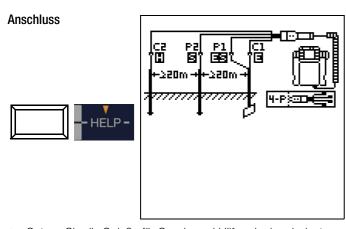



Bild 10.8.1 Messung des Erdungswiderstandes nach dem Vierleiterverfahren

- Setzen Sie die Spieße für Sonde und Hilfserder in mindestens 20 m bzw. 40 m Entfernung vom Erder, siehe Bild oben.
- Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Prüfstecker.
- Schließen Sie die Sonden, Hilfserder und Erder über die 4mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen!

Hinweis

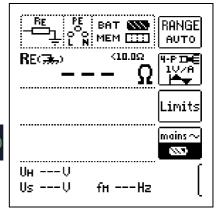
Der Erder wird beim Vierleiterverfahren mit zwei getrennten Messleitungen mit den Klemmen "E" bzw. "ES" verbunden, die Sonde an die Klemme "S" und der Hilfserder an die Klemme "H" angeschlossen.

Hinweis

Um Nebenschlüsse zu vermeiden müssen die Messleitungen gut isoliert sein. Die Messleitungen sollten sich nicht kreuzen oder über lange Strecken parallel laufen, um den Einfluss von Verkopplungen auf ein Mindestmaß zu begrenzen.

Messfunktion wählen

Betriebsart wählen



Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen

- \square Messbereich: AUTO, 50 k Ω , 20 k Ω , 2 k Ω , 200 Ω , 20 Ω
- Anschlussart: 4-polig
- ☐ Wandlerübersetzung: hier ohne Bedeutung
- \square Abstand d (für Messung ρ_F): hier ohne Bedeutung

Messung starten

Spannungstrichter

Über die geeigneten Standorte von Sonde und Hilfserder erhalten Sie Aufschluss, wenn Sie den Verlauf von Spannung bzw. Ausbreitungswiderstand im Erdreich beachten.

Der vom Erdungsmessgerät über Erder und Hilfserder geschickte Messstrom erzeugt um den Erder und den Hilfserder eine Potentialverteilung in Form eines Spannungstrichters (vgl. Bild 10.8.3 Seite 39). Analog zur Spannungsverteilung verläuft die Widerstandsverteilung.

Die Ausbreitungswiderstände von Erder und Hilfserder sind in der Regel unterschiedlich. Die beiden Spannungs- bzw. Widerstandstrichter sind deshalb nicht symmetrisch.

Ausbreitungswiderstand von Erdern kleiner Ausdehnung

Für das richtige Erfassen des Ausbreitungswiderstandes von Erdern ist die Anordnung der Sonde und Hilfserder sehr wesent-

Die Sonde muss zwischen Erder und Hilfserder in der sogenannten neutralen Zone (Bezugserde) eingesetzt werden (vgl. Bild 10.8.2 Seite 39).

Die Spannungs- bzw. Widerstandskurve verläuft deshalb innerhalb der neutralen Zone nahezu horizontal.

Für die Wahl der geeigneten Sonden- und Hilfserderwiderstände verfahren Sie wie folgt:

Hilfserder in einem Abstand von ca. 40 m vom Erder einschlagen.

- Sonde in der Mitte der Verbindungslinie Erder Hilfserder einsetzen und den Erdungswiderstand bestimmen.
- Sondenabstand 2 ... 3 m in Richtung Erder, dann 2 ... 3 m in Richtung Hilfserder gegenüber dem ursprünglichen Standort verändern und Erdungswiderstand messen.

Ergeben die 3 Messungen den gleichen Messwert, dann ist dies der gesuchte Erdungswiderstand. Die Sonde befindet sich in der neutralen Zone.

Sind die drei Messwerte für den Erdungswiderstand jedoch voneinander abweichend, dann befindet sich der Sondenstandort entweder nicht in der neutralen Zone oder die Spannungs- bzw. Widerstandskurve verläuft im Sondeneinstechpunkt nicht horizontal.

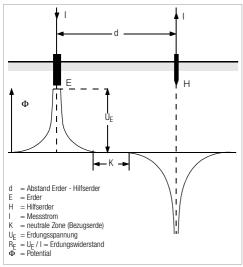


Bild 10.8.2 Spannungsverlauf im homogenen Erdreich zwischen Erder E und Hilfserder H

Richtige Messergebnisse können in solchen Fällen entweder durch Vergrößern des Abstandes Hilfserder – Erder oder durch Versetzen der Sonde auf der Mittelsenkrechten zwischen Hilfserder und Erder (vgl. Bild 10.8.3) erreicht werden. Durch Versetzen der Sonde auf der Mittelsenkrechten wandert der Sondenpunkt aus dem Einflussbereich der beiden Spannungstrichter von Erder und Hilfserder heraus.

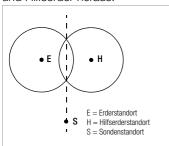


Bild 10.8.3 Sondenabstand S außerhalb der sich überschneidenden Spannungstrichter auf der Mittelsenkrechten zwischen Erder E und Hilfserder H

Ausbreitungswiderstand von Erdungsanlagen größerer Ausdehnung

Für das Messen ausgedehnter Erdungsanlagen sind wesentlich größere Abstände zu Sonde und Hilfserder erforderlich; man rechnet hier mit dem 2,5- bzw. 5-fachen Wert der größten Diagonale der Erdungsanlage.

Solche ausgedehnten Erdungsanlagen weisen oft Ausbreitungswiderstände in der Größenordnung von nur einigen Ohm und weniger auf, so dass es besonders wichtig ist, die Messsonde in der neutralen Zone einzusetzen.

Die Richtung für Sonde und Hilfserder sollten Sie im rechten Winkel zur größten Längenausdehnung der Erdungsanlage wählen. Der Ausbreitungswiderstand muss klein gehalten werden; notfalls müssen dazu mehrere Erdspieße verwendet (Abstand 1 ... 2 m) und untereinander verbunden werden.

In der Praxis lassen sich große Messabstände wegen Geländeschwierigkeiten jedoch oft nicht erreichen.

In diesem Fall verfahren Sie wie in Bild 10.8.4 dargestellt.

- Der Hilfserder H wird im größtmöglichen Abstand von der Erdungsanlage eingesetzt.
- Mit der Sonde tastet man in gleich großen Schritten den Bereich zwischen Erder und Hilfserder ab (Schrittweite ca. 5 m).
- Die gemessenen Widerstände werden tabellarisch und anschließend grafisch, wie in Bild 10.8.4 dargestellt aufgetragen (Kurve I).

Legt man durch den Wendepunkt S1 eine Parallele zur Abszisse, so teilt diese Linie die Widerstandskurve in zwei Teile.

Der untere Teil ergibt, an der Ordinate gemessen, den gesuchten Ausbreitungswiderstand des Erders $R_{A/E}$; der obere Wert ist der Ausbreitungswiderstand des Hilfserders $R_{A/H}$.

Der Ausbreitungswiderstand des Hilfserders soll bei einer derartigen Messanordnung kleiner sein als das 100-fache des Ausbreitungswiderstandes des Erders.

Bei Widerstandskurven ohne ausgeprägten horizontalen Bereich sollte die Messung mit verändertem Standort des Hilfserders kontrolliert werden. Diese weitere Widerstandskurve ist mit geänderten Abszissen-Maßstab so in das erste Diagramm einzutragen, dass beide Hilfserderstandorte zusammenfallen. Mit dem Wendepunkt S2 kann der zuerst ermittelte Ausbreitungswiderstand kontrolliert werden Bild 10.8.4.

Hinweise für Messungen im ungünstigen Gelände

In sehr ungünstigem Gelände (z. B. Sandboden nach längerer Trockenperiode) können durch Begießen der Erde um Hilfserder und Sonde mit Soda- oder Salzwasser der Hilfserder- und Sondenwiderstand auf zulässige Werte verringert werden.

Reicht diese Maßnahme noch nicht aus, dann können zum Hilfserder mehrere Erdspieße parallel geschaltet werden.

Im gebirgigen Gelände oder bei sehr steinigem Untergrund, wo das Einschlagen von Erdspießen nicht möglich ist, können auch Drahtgitter mit 1 cm Maschenweite und ca. 2 m² Fläche verwendet werden. Diese Gitter sind flach auf den Boden zu legen, mit Soda- oder Salzwasser zu übergießen und eventuell mit feuchten, erdgefüllten Säcken zu beschweren.

Kurve I (KI)		Kurve	II (KII)
m	W	m	W
5	0,9	10	0,8
10	1,28	20	0,98
15	1,62	40	1,60
20	1,82	60	1,82
25	1,99	80	2,00
30	2,12	100	2,05
40	2,36	120	2,13
60	2,84	140	2,44
80	3,68	160	2,80
100	200	200	100

S1, S2 = Wendepunkte KI = Kurve I KII = Kurve II

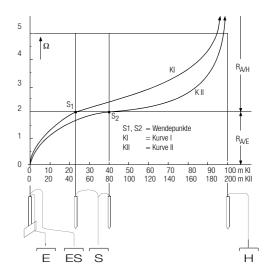
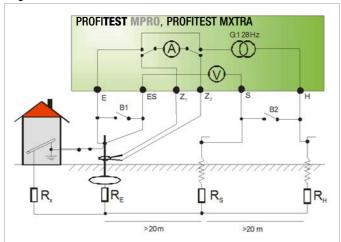
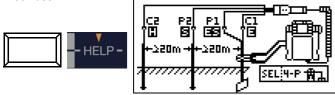



Bild 10.8.4 Messen des Erdungswiderstandes einer ausgedehnten Erdungsanlage

Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – selektiv (4-polia) 10.9 mit Zangenstromsensor sowie Messadapter PRO-RE als Zubehör (nur MPRO & MXTRA)

Allgemeines



In Anlagen mit mehreren parallel geschalteten Erdern wird bei Messungen des Erdungswiderstandes der Gesamtwiderstand der Erdungsanlage gemessen.

Bei der Messung werden zwei Erdspieße (Hilfserder und Sonde) gesetzt. Der Messstrom wird zwischen Erder und Hilfserder eingespeist und der Spannungsfall zwischen Erder und Sonde gemessen.

Die Stromzange wird um den zu messenden Erder gelegt und damit nur der Teil des Messstromes gemessen, der tatsächlich durch den Erder fließt.

Anschluss

- Setzen Sie die Spieße für Sonde und Hilfserder in mindestens 20 m bzw. 40 m Entfernung vom Erder, siehe Bild oben.
- Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Prüfstecker.
- Schließen Sie die Sonden, Hilfserder und Erder über die 4mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen!
- Schließen Sie den Zangenstromsensor Z3512A an die Buchsen (15) und (16) am Prüfgerät an.
- Fixieren Sie den Zangenstromsensor auf dem Erder.

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen am Prüfgerät

 \Box Messbereich: 200 Ω

Hinweis 🏻

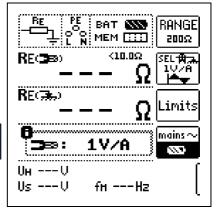
Bei Umschaltung auf selektive Messung, wird automatisch auf den Messbereich AUTO umgeschaltet, wenn ein Messbereich größer als 200 Ω eingestellt war.

- ☐ Anschlussart: selektiv
- Wandlerübersetzung Zangenstromsensor: 1:1 (1V/A,) 1:10 (100mV/A), 1:100 (10mV/A)
- \Box Abstand d (für Messung ρ_F): hier ohne Bedeutung

Parameter einstellen am Zangenstromsensor

☐ Messbereich Zangenstromsenor: siehe Tabelle unten

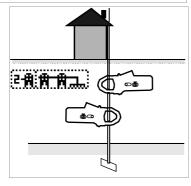
Messbereich am Zangenstromsensor wählen


Prüfgerät	Zange Z3512A		
Parameter Wandler- übersetzung	Schalter	Mess- bereich	
1:1 1 V / A	1 A / x 1	1 A	
1:10 100 mV / A	10 A / x 10	10 A	
1:100 10 mV / A	100 A / x 100	100 A	

Wichtige Hinweise für den Einsatz des Zangenstromsensors

- Verwenden Sie für diese Messung ausschließlich den Zangenstromsensor Z3512A.
- Betreiben Sie die Zange fest angeschlossen. Der Sensor darf während der Messung nicht bewegt werden.
- Der Zangenstromsensor darf nur bei ausreichendem Abstand von starken Fremdfeldern eingesetzt werden.
- Achten Sie darauf, dass die Anschlussleitung des Zangenstromsensors möglichst getrennt von den Sondenleitungen verlegt ist.


Messung starten



10.10 Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – Erdschleifenmessung (mit Zangenstromsensor und -wandler sowie Messadapter PRO-RE/2 als Zubehör) (nur MPRO & MXTRA)

Methode 2-Zangen-Messung

Bei Erdungsanlagen, die aus mehreren miteinander verbundenen Erdern(R1...Rx) bestehen, kann der Erdungswiderstand eines einzelnen Erders(Rx) mithilfe von 2 Stromzangen ermittelt werden, ohne Rx abzutrennen oder Spieße zu setzen. Diese Messmethode eignet sich besonders bei Gebäuden oder Anlagen, bei denen Sonden und Hilfserder nicht gesetzt werden können oder

Erder nicht aufgetrennt werden dürfen.

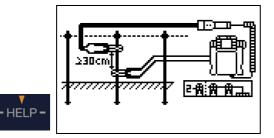

Darüber hinaus wird diese "spießlose" Messung als eine von drei Messungen an Blitzschutzsystemen durchgeführt, um zu Prüfen, ob Ströme abgeleitet werden können.

Bild rechts:

Messadapter PRO-RE/2 als Zubehör zum Anschluss der Generatorstromzange E-Clip 2

Anschluss

- Sonden und Hilfserder brauchen nicht gesetzt werden.
- Das Auftrennen des Erders entfällt ebenfalls.
- Montieren Sie den Adapter PRO-RE/2 (Z502T) auf den Prüfstecker.
- Schließen Sie die Generatorzange (Zangenstromwandler) E-Clip 2 über die 4-mm-Sicherheitsstecker des Adapters PRO-RE/2 an.
- Schließen Sie den Zangenstromsensor Z3512A an die Buchsen (15) und (16) am Prüfgerät an.
- Fixieren Sie die 2 Zangen an einem Erder (Erdspieß) in unterschiedlichen Höhen mit einem Abstand größer oder gleich 30 cm.

Messfunktion wählen

Betriebsart wählen

Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen am Prüfgerät

☐ Messbereich: hier generell AUTO

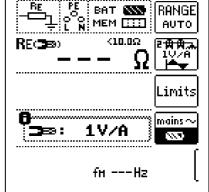
Bei Umschaltung auf 2-Zangen-Messung wird automatisch in den Bereich AUTO geschaltet. Dieser Bereich ist dann nicht veränderbar!

- ☐ Anschlussart: 2-Zangen
- Wandlerübersetzung Zangenstromsensor: 1:1 (1V/A), 1:10 (100mV/A), 1:100 (10mV/A)
- \Box Abstand d (für Messung ρ_F): hier ohne Bedeutung

Parameter einstellen am Zangenstromsensor

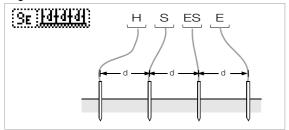
☐ Messbereich Zangenstromsenor: siehe Tabelle unten

Messbereich am Zangenstromsensor wählen


Prüfgerät	Zange Z3512/	1
Parameter Wandler- übersetzung	rameter Schalter /andler-	
1:1 1 V / A	1 A / x 1	1 A
1:10 100 mV / A	10 A / x 10	10 A
1:100 10 mV / A	100 A / x 100	100 A

Wichtige Hinweise für den Einsatz des Zangenstromsensors

- Verwenden Sie für diese Messung ausschließlich den Zangenstromsensor Z3512A.
- Betreiben Sie die Zange fest angeschlossen. Der Sensor darf während der Messung nicht bewegt werden.
- Der Zangenstromsensor darf nur bei ausreichendem Abstand von starken Fremdfeldern eingesetzt werden.
- Achten Sie darauf, dass die Anschlussleitungen der 2 Zangen möglichst getrennt voneinander verlegt sind.


Messung starten

10.11 Erdungswiderstandsmessung batteriebetrieben "Akkubetrieb" – Messung des spezifischen Erdungswiderstands ρ_{E} (nur MPRO & MXTRA)

Allgemeines

Messung des spezifischen Erdwiderstandes

Die Bestimmung des spezifischen Erdungswiderstands ist zur Planung von Erdungsanlagen erforderlich. Hierbei sollen verlässliche Werte ermittelt werden, die selbst schlechteste Bedingungen berücksichtigen, siehe "Geologische Auswertung" auf Seite 43.

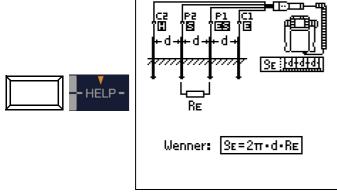
Maßgebend für die Größe des Ausbreitungswiderstandes eines Erders ist der spezifische Widerstand der Erde. Dieser kann mit dem PROFITEST MASTER nach der Methode von Wenner gemessen

Im Abstand d werden in gerader Linie vier möglichst lange Erdspieße in den Boden getrieben und mit dem Erdungsmessgerät verbunden, siehe Bild oben.

Die übliche Länge der Erdspieße ist 30 bis 50 cm; bei schlechtleitendem Erdreich (Sandboden etc.) können längere Erdspieße verwendet werden. Die Einschlagtiefe der Erdspieße darf höchstens 1/20 des Abstandes d betragen.

Es besteht die Gefahr von Fehlmessungen, wenn parallel zur Messanordnung Rohrleitungen, Kabel oder andere unterirdische metallene Leitungen verlaufen.

Der spezifische Erdwiderstand errechnet sich nach der Formel:


 $\rho_E = 2\pi \cdot d \cdot R$ dabei ist:

 $\pi = 3,1416$

d = Abstand zwischen zwei Erdspießen in m

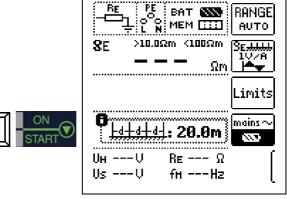
 $R = \text{ermittelter Widerstandswert in } \Omega$ (dieser Wert entspricht R_F ermittelt mit der 4-Leitermessung)

Anschluss

- Setzen Sie die Spieße für Sonde und Hilfserder in jeweils gleichem Abstand, siehe Bild oben.
- Stellen Sie sicher, dass nicht zu hohe Übergangswiderstände zwischen Sonde und Erdreich vorliegen.
- Montieren Sie den Adapter PRO-RE (Z501S) auf den Prüfstecker.
- Schließen Sie die Sonden. Hilfserder und Erder über die 4mm-Bananenbuchsen des Adapters PRO-RE an. Achten Sie hierbei auf die Beschriftung der Bananenbuchsen!

Messfunktion wählen

Betriebsart wählen

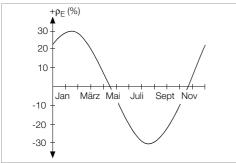


Die gewählte Betriebsart erscheint invers dargestellt: weißes Akkusymbol auf schwarzem Hintergrund.

Parameter einstellen

- \Box Messbereich: AUTO, 50 kΩ, 20 kΩ, 2 kΩ, 200 Ω, 20 Ω
- □ Anschlussart: ρ_F (Rho)
- ☐ Wandlerübersetzung: hier ohne Bedeutung
- \Box Abstand d für Messung ρ_F : von 0,1 m bis 999 m editierbar

Messung starten


Geologische Auswertung

Von Extremfällen abgesehen, erfasst die Messung den zu untersuchenden Boden bis zu einer Tiefe, die ungefähr gleich dem Sondenabstand d ist.

Es ist also möglich, durch Variation des Sondenabstandes Aufschluss über die Schichtung des Untergrundes zu erhalten. Gut leitende Schichten (Grundwasserspiegel), in welche Erder verlegt werden sollen, lassen sich so aus einer schlecht leitenden Umgebung herausfinden.

Spezifische Erdwiderstände sind großen Schwankungen unterworfen, die verschiedene Ursachen haben können, wie Porosität, Durchfeuchtung, Lösungskonzentration von Salzen im Grundwasser und klimatische Schwankungen.

Der Verlauf des spezifischen Erdwiderstandes p_E in Abhängigkeit von der Jahreszeit (der Bodentemperatur sowie dem negativen Temperaturkoeffizienten des Bodens) kann mit recht guter Annäherung durch eine Sinuskurve dargestellt werden.

Spezifische Erdwiderstände pE in Abhängigkeit von der Jahreszeit ohne Beeinflussung durch Niederschläge (Eingrabtiefe des Erders < 1,5 m)

In der folgenden Tabelle sind einige typische spezifische Erdwiderstände für verschiedene Böden zusammengestellt.

Art des Erdreichs	spezifischer Erdwiderstand $\rho_E \left[\Omega m\right]$
nasser Moorboden	8 60
Ackerboden, Lehm- und Ton- boden, feuchter Kies	20 300
feuchter Sandboden	200 600
trockener Sandboden, trockener Kies	200 2000
steiniger Boden	300 8000
Felsen	10 ⁴ 10 ¹⁰

Spezifischer Erdwiderstand ρ_E bei verschiedenen Bodenarten

Berechnen von Ausbreitungswiderständen

Für die geläufigen Erderformen sind in dieser Tabelle die Formeln für die Berechnung der Ausbreitungswiderstände angegeben. Für die Praxis genügen diese Faustformeln durchaus.

Nummer	Erder	Faustformel	Hilfsgröße
1	Banderder (Strahlenerder)	$R_A = \frac{2 \cdot \rho_E}{I}$	_
2	Staberder (Tiefenerder)	$R_A = \frac{\rho_E}{I}$	_
3	Ringerder	$R_{\mathbf{A}} = \frac{2 \cdot \rho_{\mathbf{E}}}{3\mathbf{D}}$	$\mathbf{D} = 1,13 \cdot \sqrt[2]{\mathbf{F}}$
4	Maschenerder	$R_{A} = \frac{2 \cdot \rho_{E}}{2D}$	$\mathbf{D} = 1,13 \cdot \sqrt[2]{\mathbf{F}}$
5	Plattenerder	$\mathbf{R}_{\mathbf{A}} = \frac{2 \cdot \rho_{\mathbf{E}}}{4.5 \cdot \mathbf{a}}$	_
6	Halbkugelerder	$R_A = \frac{\rho_E}{\pi \cdot D}$	$\mathbf{D} = 1.57 \cdot \sqrt[3]{\mathbf{J}}$

Formeln zur Berechnung des Ausbreitungswiderstandes $R_{\rm A}$ für verschiedene Erder

 R_A = Ausbreitungswiderstand (Ω)

 ρ_F = Spezifischer Widerstand (Ω m)

I = Länge des Erders (m)

D = Durchmesser eines Ringerders, Durchmesser der Ersatzkreisfläche eines Maschenerders oder Durchmesser eines Halbkugelerders (m)

F = Fläche (m²) der umschlossenen Fläche eines Ring- oder Maschenerders

a = Kantenlänge (m) einer quadratischen Erderplatte; bei Rechteckplatten ist für a einzusetzen: √ b x c, wobei b und c die beiden Rechteckseiten sind.

J = Inhalt (m³) eines Einzelfundamentes

11 Messen des Isolationswiderstandes

Achtuna!

Isolationswiderstände können nur an spannungsfreien Objekten gemessen werden.

Allgemein 11.1

Messfunktion wählen

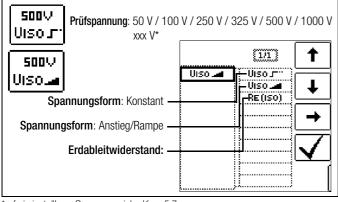
Anschluss

2-Pol-Adapter oder Prüfstecker

Hinweis 4

Das Prüfgerät misst die Isolation immer zwischen den Kontakten L und PE

Bei Anlagen ohne RCD muss N und PE aufgetrennt wer-



Hinweis

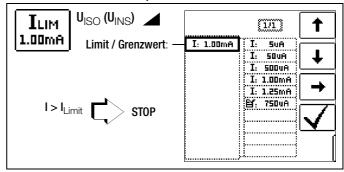
Überprüfen der Messleitungen vor einer Messreihe

Vor der Isolationsmessung sollte durch Kurzschließen der Messleitungen an den Prüfspitzen überprüft werden, ob das Gerät < 1 k Ω anzeigt. Hierdurch kann ein falscher Anschluss vermieden oder eine Unterbrechung bei den Messleitungen festgestellt werden.

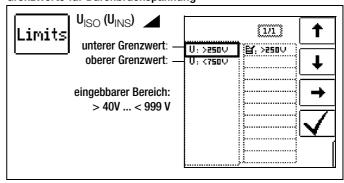
Parameter einstellen

frei einstellbare Spannung siehe Kap. 5.7

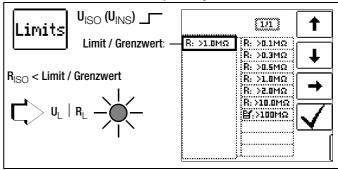
Auswahl der Polung



2-Pol-Messung (Auswahl nur für Protokollierung relevant): Messungen zwischen:


Lx-PE / N-PE / L+N-PE / Lx-N / Lx-Ly / AUTO*

mit x, y = 1, 2, 3


Durchbruchströme für Rampenfunktion

Grenzwerte für Durchbruchspannung

Grenzwerte für konstante Prüfspannung

□ Prüfspannung

Für Messungen an empfindlichen Bauteilen sowie bei Anlagen mit spannungsbegrenzenden Bauteilen kann eine von der Nennspannung abweichende, meist niedrigere, Prüfspannung eingestellt werden.

Spannungsform

Die Funktion ansteigende Prüfspannung (Rampenfunktion) "U_{ISO}"" dient zum Aufspüren von Schwachstellen in der Isolation sowie zum Ermitteln der Ansprechspannung von spannungsbegrenzenden Bauelementen. Nach Drücken der Taste ON/START, wird die Prüfspannung kontinuierlich bis zur vorgegebenen Nennspannung U_N erhöht. **U** ist die während und nach der Prüfung gemessene Spannung an den Prüfspitzen. Diese fällt nach der Messung auf einen Wert unter 10 V ab, siehe Abschnitt "Messobjekt entladen". Die Isolationsmessung mit ansteigender Prüfspannung wird beendet:

sobald die maximal eingestellte Prüfspannung UN erreicht wird und der Messwert stabil ist

oder

sobald der eingestellte Prüfstrom erreicht wird (z. B. nach einem Überschlag bei der Durchbruchspannung). Für U_{ISO} wird die maximal eingestellte Prüfspannung U_N oder eine evtl. vorhandene Ansprech- bzw. Durchbruchspannung angezeigt.

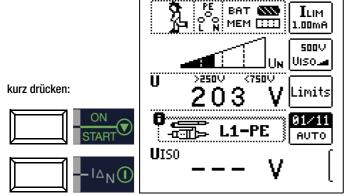
Parameter AUTO siehe Kap. 5.8

Die Funktion konstante Prüfspannung bietet zwei Möglichkeiten:

Nach kurzem Drücken der Taste ON/START wird die eingestellte Prüfspannung U_N ausgegeben und der Isolationswiderstand R_{ISO} gemessen. Sobald der Messwert stabil ist (bei hohen Leitungskapazitäten kann die Einschwingzeit einige Sekunden betragen) wird die Messung beendet und der letzte Messwert für R_{ISO} und U_{ISO} angezeigt. U ist die während und nach der Prüfung gemessene Spannung an den Prüfspitzen. Diese fällt nach der Messung auf einen Wert unter 10 V ab, siehe Abschnitt "Messobjekt entladen".

oder

Solange Sie die Taste ON/START drücken, wird die Prüfspannung U_N ausgegeben und der Isolationswiderstand R_{ISO} gemessen. Lassen Sie die Taste erst los, wenn der Messwert stabil ist (bei hohen Leitungskapazitäten kann die Einschwingzeit einige Sekunden betragen). Die während der Prüfung gemessene Spannung U entspricht dabei der Spannung U_{ISO}. Nach Loslassen der Taste ON/START wird die Messung beendet und der letzte Messwert für R_{ISO} und U_{ISO} angezeigt. U fällt nach der Messung auf einen Wert unter 10 V ab, siehe Abschnitt "Messobjekt entladen".


Protokollierung der Polauswahl

Nur zur Protokollierung können hier die Pole angegeben werden, zwischen denen geprüft wird. Die Eingabe hat keinen Einfluss auf die tatsächliche Prüfspitzen- bzw. Polauswahl.

□ Limits – Einstellen des Grenzwertes

Sie können den Grenzwert des Isolationswiderstandes einstellen. Treten Messwerte unterhalb dieses Grenzwertes auf, so leuchtet die rote LED U_L/R_L . Es steht eine Auswahl von Grenzwerten zwischen 0,5 M Ω und 10 M Ω zur Verfügung. Der Grenzwert wird oberhalb des Messwertes eingeblendet.

Messung starten – ansteigende Prüfspannung (Rampenfunktion)

Schnelles Umschalten der Polungen, falls Parameter auf AUTO eingestellt: 01/10 ... 10/10: L1-PE ... L1-L3

Bei Auswahl von "Halbautomatischem Polwechsel" (siehe Kap. 5.8) wird anstelle der Rampe das Symbol für halbautomatischen Polwechsel dargestellt.

Allgemeine Hinweise zur Isolationsmessung mit Rampenfunktion

Die Isolationsmessung mit Rampenfunktion dient folgenden Zwecken:

- Aufspüren von Schwachstellen in der Isolation der Messobiekte
- Ermitteln der Ansprechspannung bzw. Pr
 üfen der korrekten Funktion von spannungsbegrenzenden Bauelementen. Dies können beispielsweise Varistoren, Überspannungsbegrenzer (z. B. DEHNguard® von Dehn+Söhne) oder Funkenstrecken sein

Die Messspannung des Prüfgerätes steigt bei dieser Messfunktion kontinuierlich an, maximal bis zur gewählten Grenzspannung.

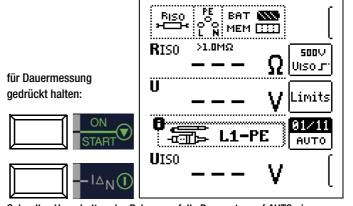
Der Messvorgang wird über die Taste "START/STOPP" gestartet und läuft selbständig ab bis eins der folgende Ereignisse eintritt:

- gewählte Grenzspannung wird erreicht,
- eingestellter Grenzstrom wird erreicht, oder
- Eintritt eines Durchbruches (bei Funkenstrecken).

Folgende drei Vorgehensweisen bei der Isolationsmessung mit Rampenfunktion werden unterschieden:

Überprüfen von Überspannungsbegrenzern oder Varistoren bzw. Ermitteln deren Ansprechspannung:

- Wahl der Maximalspannung so, dass die zu erwartende Durchbruchsspannung des Messobjektes etwa im zweiten Drittel der Maximalspannung liegt (ggf. Datenblatt des Herstellers beachten).
- Wahl der Grenzstromstärke nach Erfordernis bzw. Angaben im Datenblatt des Herstellers (Kennlinie des Messobjektes).


Ermittlung der Ansprechspannung von Funkenstrecken:

- Wahl der Maximalspannung so, dass die zu erwartende Durchbruchsspannung des Messobjektes etwa im zweiten Drittel der Maximalspannung liegt (ggf. Datenblatt des Herstellers beachten).
- Wahl der Grenzstromstärke nach Erfordernis im Bereich
 5 ... 10 µA (bei größeren Grenzströmen ist hierbei das Ansprechverhalten zu instabil, so dass es zu fehlerhaften Messergebnissen kommen kann).

Aufspüren von Schwachstellen in der Isolation:

- Wahl der Maximalspannung so, dass diese die zulässige Isolationsspannung des Messobjektes nicht übersteigt; kann davon ausgegangen werden, dass ein Isolationsfehler bereits bei deutlich kleinerer Spannung auftritt, sollte die Maximalspannung entsprechend kleiner gewählt werden (mindestens jedoch größer als die zu erwartende Durchbruchsspannung) die Steigung der Rampe ist dadurch geringer (Erhöhung der Messgenauigkeit).
- Wahl der Grenzstromstärke nach Erfordernis im Bereich
 5 ... 10 µA (vgl. Einstellung bei Funkenstrecken).

Messung starten – konstante Prüfspannung

Schnelles Umschalten der Polungen, falls Parameter auf AUTO eingestellt: 01/10 ... 10/10: L1-PE ... L1-L3

Bei der Isolationswiderstandsmessung werden die Akkus des Gerätes stark belastet. Drücken Sie die Taste Start ▼ bei der Funktion "konstante Prüfspannung" nur so lange (sofern Dauermessung erforderlich ist), bis die Anzeige stabil ist.

Besondere Bedingungen bei der Isolationswiderstandsmessung

Achtuna!

Isolationswiderstände können nur an spannungsfreien Objekten gemessen werden.

Ist der gemessene Isolationswiderstand kleiner als der eingestellte Grenzwert, so leuchtet die LED $U_{\rm I}$ /R $_{\rm I}$.

Ist in der Anlage eine Fremdspannung von \geq 25 V vorhanden, so wird der Isolationswiderstand nicht gemessen. Es leuchtet die LED MAINS/NETZ und das Pop-up-Fenster "Fremdspannung vorhanden" wird eingeblendet.

Sämtliche Leitungen (L1, L2, L3 und N) müssen gegen PE gemessen werden!

Achtuna!

Berühren Sie nicht die Anschlusskontakte des Gerätes, wenn eine Isolationswiderstandsmessung läuft!

Sind die Anschlusskontakte frei oder zur Messung an einem ohmschen Verbraucher angeschlossen, dann würde bei einer Spannung von 1000 V ein Strom von ca. 1 mA über Ihren Körper fließen. Durch den spürbaren Stromschlag ist eine Verletzungsgefahr (z. B. Folge durch Erschrecken usw.) gegeben.

Messobjekt entladen

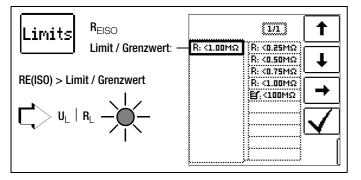
Achtung!

Messen Sie an einem kapazitiven Objekt, z. B. an einem langen Kabel, so wird sich dieses bis auf ca. 1000 V aufladen! Das Berühren ist dann lebensgefährlich!

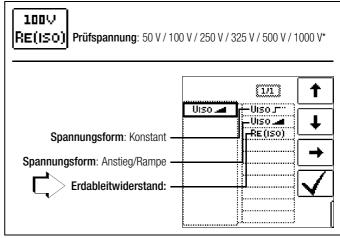
Wenn Sie an kapazitiven Objekten den Isolationswiderstand gemessen haben, so entlädt sich das Messobjekt automatisch über das Gerät nach Beenden der Messung. Der Kontakt zum Objekt muss dafür weiterhin bestehen. Das Absinken der Spannung wird über U sichtbar.

Trennen Sie den Anschluss erst, wenn für U < 10 V angezeigt wird!

Beurteilung der Messwerte

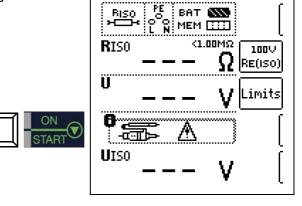

Damit die in den DIN VDE-Bestimmungen geforderten Grenzwerte des Isolationswiderstandes nicht unterschritten werden, muss der Messfehler des Gerätes berücksichtigt werden. Aus der Tabelle 3 auf Seite 88 können Sie die erforderlichen Mindestanzeigewerte für Isolationswiderstände ermitteln. Die Werte berücksichtigen den maximalen Fehler (bei Nenngebrauchsbedingungen) des Gerätes. Zwischenwerte können Sie interpolieren.

11.2 Sonderfall Erdableitwiderstand (R_{FISO})


Diese Messung wird durchgeführt, um die Ableitfähigkeit elektrostatischer Ladungen für Bodenbeläge nach EN 1081 zu ermitteln.

Messfunktion wählen

Parameter einstellen


frei einstellbare Spannung siehe Kap. 5.7

Anschluss und Messaufbau

- Reiben Sie den Bodenbelag an der zu pr
 üfenden Stelle mit einem trockenen Tuch ab.
- Setzen Sie die Fußbodensonde 1081 auf und belasten Sie diese mit einem Gewicht von mindestens 300 N (30 kg).
- Stellen Sie eine leitende Verbindung zwischen Messelektrode und Prüfspitze her und verbinden Sie den Messadapter (2-polig) mit der Erdanschlussstelle, z. B. Schutzkontakt einer Netzsteckdose, Zentralheizung; Voraussetzung sichere Erdverbindung.

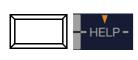
Messung starten

Die Höhe des Grenzwertes des Erdableitwiderstandes richtet sich nach den relevanten Bestimmungen.

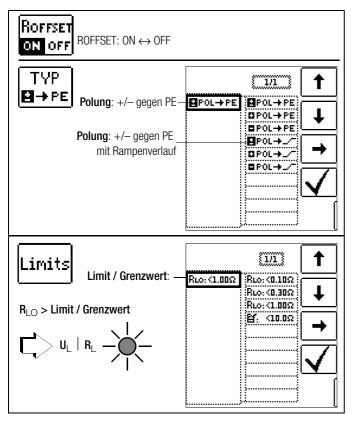
12 Messen niederohmiger Widerstände bis 200 Ohm (Schutzleiter und Schutzpotenzialausgleichsleiter)

Die Messung niederohmiger Widerstände von Schutzleitern, Erdungsleitern oder Potenzialausgleichsleitern muss laut Vorschrift mit (automatischer) Umpolung der Messspannung oder mit Stromfluss in der einen (+ Pol an PE) und in der anderen Richtung (- Pol an PE) durchgeführt werden.

Achtung!


Niederohmige Widerstände dürfen nur an spannungsfreien Objekten gemessen werden.

Messfunktion wählen


Anschluss

nur über 2-Pol-Adapter!

Parameter einstellen

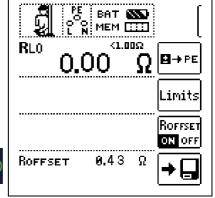
□ ROFFSET ON/OFF

– Berücksichtigen von Messleitungen bis 10 Ω

Bei der Verwendung von Messleitungen oder Verlängerungsleitungen kann deren ohmscher Widerstand automatisch vom Messergebnis subtrahiert werden. Gehen Sie hierzu folgendermaßen vor:

- Stellen Sie Roffset von OFF auf ON. "Roffset = 0.00 Ω " wird in der Fußzeile eingeblendet.
- Wählen Sie eine Polung oder die automatische Umpolung aus.
- Schließen Sie das Ende der verlängerten Prüfleitung mit der zweiten Prüfspitze des Prüfgeräts kurz.
- Lösen Sie die Messung des Offsetwiderstands mit I_{AN} aus.

Zunächst ertönt ein Intervall-Warnton und ein blinkender Hinweis wird eingeblendet, um zu verhindern, dass ein bereits gespeicherter Offsetwert aus Versehen gelöscht wird.


Starten Sie durch nochmaliges Drücken der Auslösetaste die Offsetmessung oder brechen Sie diese durch Drücken der Taste ▼ ON/START (hier = ESC) ab.

Hinweis

Wird die Offsetmessung durch ein Fehler-Popup (Roffset > 10 Ω bzw. Differenz zwischen RLO+ und RLOgrößer als 10%) gestoppt, dann bleibt der zuletzt gemessene Offsetwert erhalten. Ein versehentliches Löschen des einmal ermittelten Offsetwertes wird dadurch nahezu ausgeschlossen! Im anderen Fall wird der jeweils kleinere Wert als Offsetwert abgespeichert. Der maximale Offset beträgt 10,0 Ω. Durch den Offset können negative Widerstandswerte resultieren.

Roffset messen

In der Fußzeile des Displays erscheint nun die Meldung ROFFSET $x.xx \Omega$, wobei x.xx einen Wert zwischen 0,00 und 10,0 Ω annehmen kann. Dieser Wert wird nun bei allen nachfolgenden RLO-Messungen vom eigentlichen Messergebnis subtrahiert, sofern Sie die Softkey-Taste ROFFSET ON/OFF auf ON geschaltet haben. ROFFSET muss in folgenden Fällen erneut ermittelt werden:

- bei Wechsel zwischen den Polungsarten
- nach Umschalten von ON nach OFF und zurück.

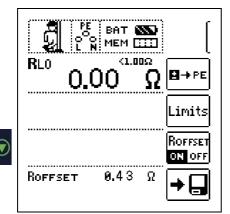
Sie können den Offsetwert bewusst löschen, indem Sie ROFFSET von OFF nach ON schalten.

Hinweis 4

Verwenden Sie diese Funktion ausschließlich, wenn Sie mit Verlängerungsleitungen arbeiten.

Bei Einsatz unterschiedlicher Verlängerungsleitungen, muss der zuvor beschriebene Vorgang grundsätzlich wiederholt werden.

□ Typ / Polung


Hier kann die Stromflussrichtung eingestellt werden.

□ Limits – Einstellen des Grenzwertes

Sie können den Grenzwert des Widerstandes einstellen. Treten Messwerte oberhalb dieses Grenzwertes auf, so leuchtet die rote LED $\text{U}_\text{L}/\text{R}_\text{L}$. Grenzwerte können zwischen 0,10 Ω und 10,0 Ω gewählt werden (editierbar). Der Grenzwert wird oberhalb des Messwertes eingeblendet.

12.1 Messung mit konstantem Prüfstrom

Messung starten

für Dauermessung

Achtung!

Sie sollten immer zuerst die Prüfspitzen auf das Messobjekt aufsetzen bevor Sie die Taste Start ▼ drücken. Steht das Obiekt unter Spannung, dann wird die Messung gesperrt, wenn Sie zuerst die Prüfspitzen aufsetzen. Wenn Sie zuerst die Taste Start ▼ drücken und anschließend die Prüfspitzen aufsetzen, löst die Sicherung aus. Welche der beiden Sicherungen ausgelöst hat, wird im Pop-Up-Fenster der Fehlermeldung durch Pfeil signalisiert.

Bei einpoliger Messung wird der jeweilige Wert als RLO in die Datenbank übernommen.

Auswahl der Polung	Anzeige	Bedingung
+ Pol gegen PE	RLO+	keine
- Pol gegen PE	RLO-	keine
	R LO	falls Δ RL0 \leq 10 %
± Pol gegen PE	RLO+ RLO-	falls Δ RL0 > 10 %

Automatische Umpolung

Nach dem Start des Messablaufes misst das Gerät bei automatischer Umpolung zuerst in der einen, dann in der anderen Stromrichtung. Bei Dauermessung (Taste START gedrückt halten) erfolgt die Umpolung im Sekundentakt.

Ist bei der automatischen Umpolung die Differenz zwischen RLO+ und RLO- größer als 10%, so werden die Werte RLO+ und RLOstatt RLO eingeblendet. Der jeweils größere Wert von RLO+ und RLO- steht oben und wird als Wert RLO in die Datenbank übernommen.

Bewertung der Messergebnisse

Unterschiedliche Ergebnisse bei der Messung in beiden Stromrichtungen weisen auf Spannung am Messobjekt hin (z. B. Thermospannungen oder Elementspannungen).

Besonders in Anlagen, in denen die Schutzmaßnahme "Überstrom-Schutzeinrichtung" (früher Nullung) ohne getrennten Schutzleiter angewendet wird, können die Messergebnisse durch parallel geschaltete Impedanzen von Betriebsstromkreisen und durch Ausgleichsströme verfälscht werden. Auch Widerstände die sich während der Messung ändern (z. B. Induktivitäten) oder auch ein schlechter Kontakt können die Ursache für eine fehlerhafte Messung sein (Doppelanzeige).

Damit Sie eindeutige Messergebnisse erreichen, ist es notwendig, dass die Fehlerursache erkannt und beseitigt wird.

Messen Sie, um die Ursache für den Messfehler zu finden, den Widerstand in beiden Stromrichtungen.

Bei der Widerstandsmessung werden die Akkus des Gerätes stark belastet. Drücken Sie bei der Messung mit Stromfluss in einer Richtung die Taste START ▼ nur so lange, wie für die Messung erforderlich.

Hinweis

Messen niederohmiger Widerstände Die Widerstände von Messleitung und Messadapter (2polig) werden durch die Messung in Vierleitertechnik automatisch kompensiert und gehen nicht in das Messergebnis ein. Verwenden Sie jedoch eine Verlängerungsleitung, so müssen Sie deren Widerstand messen und ihn vom Messergebnis abziehen.

Widerstände, die erst nach einem "Einschwingvorgang" einen stabilen Wert erreichen, sollten Sie nicht mit automatischer Umpolung messen, sondern nacheinander mit positiver und negativer Polarität.

Widerstände, deren Werte sich bei einer Messung verändern können, sind zum Beispiel:

- Widerstände von Glühlampen, deren Werte sich aufgrund der Erwärmung durch den Messstrom verändern
- Widerstände mit einem hohen induktiven Anteil
- Übergangswiderstände an Kontaktstellen

Beurteilung der Messwerte

Siehe Tabelle 4 auf Seite 88.

Ermitteln von Leitungslängen gängiger Kupferleitungen

Wird nach der Widerstandsmessung die Taste HELP gedrückt, so werden für gängige Querschnitte die entsprechenden Leitungslängen berechnet und angezeigt.

RLo: 0	.16 Ω 1	u .	+ Ø ====+
Ø	1	Ø	1
[mm²]	[m]	[mm²]	[m]
0.14:	1	2.5:	28
0.25:	2	4.0:	32
0.50:	4	6.0:	48
0.75:	6	10.0:	80
1.00:	8	16.0:	127
1.50:	12	25.0:	199

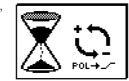
Bei unterschiedlichen Ergebnissen in beiden Stromrichtungen entfällt die Anzeige von Leitungslängen. In diesem Fall liegen offensichtlich kapazitive oder induktive Anteile vor, welche die Berechnung verfälschen.

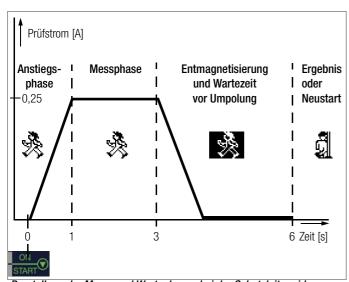
Diese Tabelle gilt ausschließlich für Leitungen aus handelsüblichem Leitungskupfer und kann nicht für andere Materialien (z. B. Aluminium) verwendet werden!

Messung an PRCDs mit stromüberwachtem Schutzleiter mit dem Prüfadapter PROFITEST PRCD als Zubehör

Anwendung

Bei bestimmten Typen von PRCDs wird der Schutzleiterstrom überwacht. Eine direkte Zu- bzw. Abschaltung des für Schutzleiterwiderstandsmessungen erforderlichen Prüfstromes von mindestens 200 mA führt zum Auslösen des PRCDs und folglich zur Trennung der Schutzleiterverbindung. Eine Schutzleitermessung ist in diesem Fall nicht mehr möglich.

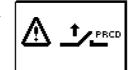

Ein spezieller Rampenverlauf für die Prüfstromzu- bzw. -abschaltung in Verbindung mit dem Prüfadapter PROFITEST PRCD ermöglicht eine Schutzleiterwiderstandsmessung ohne Auslösen des PRCDs.


Zeitlicher Ablauf der Rampenfunktion

Bedingt durch die physikalischen Eigenschaften des PRCDs liegen die Messzeiten bei dieser Rampenfunktion im Bereich von mehreren Sekunden.

Bei einer Umpolung des Prüfstromes ist darüber hinaus eine zusätzliche Wartezeit während der Umpolung erforderlich. Diese ist in der Betriebsart "automatische Umpolung" **■FoL→_**/ im Prüfablauf einprogrammiert.

Schalten Sie die Polrichtung manuell um, z. B. von "+Pol mit Rampe" **DFOL**+___, so erkennt das Prüfgerät die Anderung der Stromflussrichtung, blockiert die Messung für die erforderliche Wartezeit und zeigt gleichzeitig eine entsprechenden Hinweis an, siehe Bild rechts.



Darstellung der Mess- und Wartephasen bei der Schutzleiterwiderstandsmessung an PRCDs mit dem PROFITEST MXTRA

Auslösen eines PRCDs durch mangelhafte Kontaktierung

Während der Messung ist auf eine sichere Kontaktierung der Prüfspitzen des 2-Pol-Adapters mit dem Prüfobjekt bzw. den Buchsen am Prüfadapter PROFITEST PRCD zu achten. Unterbrechungen können zu starken Schwankungen des Prüfstromes führen, die im ungünstigen Fall den PRCD auslösen lassen.

In diesem Fall wird die Auslösung des PRCDs vom Prüfgerät ebenfalls automatisch erkannt und durch eine entsprechende Fehlermeldung signalisiert, siehe Bild rechts. Auch in diesem Fall berücksichtigt das Prüfgerät automatisch eine anschließend erforderliche Wartezeit,

bevor Sie den PRCD wieder aktivieren und die Messung erneut starten können.

Anschluss

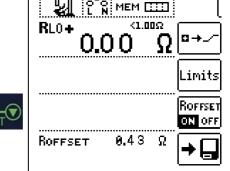
Lesen Sie die Bedienungsanleitung zum Adapter PROFITEST PRCD und hier speziell das Kap. 4.1. Dort finden Sie auch die Anschlusshinweise für die Offsetmessung sowie für die Schutzleiterwiderstandsmessung.

Polungsparameter wählen

Wählen Sie den gewünschten Polungsparameter mit Rampe.

Roffset messen

Führen Sie die Offsetmessung wie auf Seite 47 beschrieben durch, damit die Anschlusskontakte des Prüfadapters nicht mit in das Messergebnis eingehen.


Hinweis

Der Offset bleibt nur solange gespeichert, wie Sie den Polungsparameter nicht ändern. Führen Sie die Messung mit manueller Umpolung (+Pol oder -Pol) durch, müssen Sie die Offsetmessung vor jeder Messung in einer anderen Polarität wiederholen.

Schutzleiterwiderstand messen

- Prüfen Sie, ob der PRCD aktiviert ist. Wenn nicht, aktivieren Sie diesen.
- Führen Sie die Schutzleitermessung wie im Kap. 12.1 zuvor beschrieben durch. Starten Sie den Prüfablauf durch kurzes Drücken der Taste ON/START. Durch Gedrückthalten der Taste ON/START können Sie die voreingestellte Dauer der Messphase verlängern.

Messung starten

BAT XXX

der anschließenden Messphase (konstanter Strom) wird das Symbol rechts eingeblendet. Sofern Sie die Messung bereits während der Anstiegsphase

Während der Magnetisierungsphase (Kurvenanstieg) und

abbrechen, kann kein Messergebnis ermittelt und angezeigt werden.

Nach der Messung wird die Entmagnetisierungsphase (Kurvenabfall) und eine anschließende Wartezeit durch das invertierte Symbol rechts signalisiert. Während dieser Zeit kann keine neue Messung gestartet werden

Erst wenn das nebenstehende Symbol eingeblendet wird, kann das Messergebnis abgelesen und die Messung in derselben oder einer anderen Polarität gestartet werden.

13 Messungen mit Sensoren als Zubehör

13.1 Strommessung mithilfe eines Zangenstromsensors

Vor-, Ableit- und Ausgleichsströme bis 1 A sowie Arbeitsströme bis 1000 A können Sie mithilfe spezieller Zangenstromsensoren messen, die Sie hierzu über die Buchsen (15) und (16) anschließen.

Achtung!

Gefahr durch hohe Spannungen!

Verwenden Sie nur die als Zubehör angegebenen Zangenstromsensoren der GMC-I Messtechnik GmbH. Andere Zangenstromsensoren sind auf der Sekundärseite möglicherweise nicht durch eine Bürde abgeschlossen. Gefährlich hohe Spannungen können in diesem Fall den Anwender und das Prüfgerät gefährden.

Achtung!

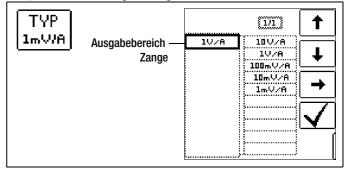
Maximale Eingangsspannung am Prüfgerät!

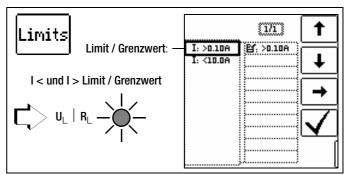
Messen Sie keine größeren Ströme, als für den Messbereich der jeweiligen Zange maximal angegeben ist. Die maximale Eingangsspannung an den Zangenanschlüssen (15) und (16) des Prüfgeräts darf 1 V nicht überschreiten!

Achtung!

Lesen und beachten Sie unbedingt die **Bedienungsanleitungen** der Zangenstromsensoren und die darin beschriebenen Sicherheitshinweise besonders in bezug auf die zugelassene **Messkategorie**.

Messfunktion wählen

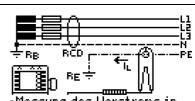

Messbereich am Zangenstromsensor wählen

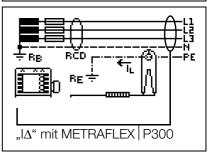

Prüfgerät		Zangen			
Parameter Wandlerü- bersetzung	Schalter WZ12C	Schalter Z3512A	Messbe- reich WZ12C	Messbe- reich Z3512A	Messbe- reich
1:1 1 V / A	1 mV/mA	x 1000 [mV/ A]	1 mA 15 A	0 1 A	5 999 mA
1:10 100 mV / A	_	x 100 [mV/A]	_	0 10 A	0,05 10 A
1:100 10 mV / A	_	x 10 [mV/A]	_	0 100 A	0,5 100 A
1:1000 1 mV / A	1 mV / A	x 1 [mV/A]	1 A 150 A	0 1000 A	5 150 A/ 999 A

Prüfgerät	Zai	nge	Prüfgerät
Parameter Wandlerü- bersetzung	Schalter METRAFLEX P300	Messbereich METRAFLEX P300	Messbe- reich
1:1 1 V / A	3 A (1 V/A)	3 A	5 999 mA
1:10 100 mV / A	30 A (100 mV/A)	30 A	0,05 10 A
1:100 10 mV / A	300 A (10 mV/A)	300 A	0,5 100 A

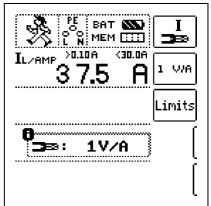
Parameter einstellen

In Abhängigkeit von dem jeweils eingestellten Messbereich am Zangenstromsensor muss der Parameter Wandlerübersetzung entsprechend am Prüfgerät eingestellt werden.




Die Vorgabe von Grenzwerten führt zu einer automatischen Bewertung am Ende der Messung.

Anschluss

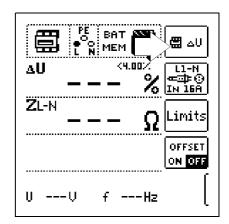


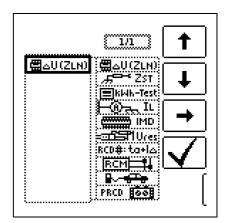
- Messung des Vorstroms in Anlagen mit RCD-Schaltern.
- Messen von Leckströmen
- Messen von Ausgleichsströmen an Potentialausgleichsleitern
- Ausschließlich spezielle Stromzange verwenden!

Messung starten

14 Sonderfunktionen – Schalterstellung EXTRA

Schalterstellung EXTRA wählen




Übersicht der Sonderfunktionen

Softkey- Taste	Bedeutung / Sonderfunktion	MBASE+	Мтеси+	MPRO	Мхтва	SECULIFE IP	Kapi- tel/ Seite
## 40	Spannungsfall- Messung Funktion ∆U	1	1	1	1	✓	Kap. 14.1 Seite 52
# g* Zst	Standort- isolations- impedanz Funktion Z _{ST}	/	1	1	1	1	Kap. 14.2 Seite 53
Екми	Prüfung des Zähleranlaufs Funktion kWh	1	1	1	1	_	Kap. 14.3 Seite 54
₩ա⊸ւ	Ableitstrom- messung Funktion I _L	_	_	_	1	1	Kap. 14.4 Seite 55
EEE IMD	lsolationswächter prüfen Funktion IMD	_	_	_	1	1	Kap. 14.5 Seite 56
∰10res	Rest- spannungs- prüfung Funktion Ures	_	_	_	1	_	Kap. 14.6 Seite 58
#:ta+l	Intelligente Rampe Funktion ta + I∆	_	_	_	1	_	Kap. 14.7 Seite 59
RCM#	RCM Residual Current Monitor Funktion RCM	_	_	_	1	_	Kap. 14.8 Seite 60
	Überprüfung der Betriebszu- stände eines Elektrofahr- zeugs an E-La- desäulen nach IEC 61851	_	1	_	1	_	Kap. 14.9 Seite 61
PRCD	Protokollierung von Fehler- simulationen an PRCDs mit dem Adapter PROFI- TEST PRCD	_	_	_	1	_	Kap. 14.10 Seite 62

Auswahl der Sonderfunktionen

Durch Drücken der obersten Softkey-Taste gelangen Sie zur Liste der Sonderfunktionen. Wählen Sie die gewünschte Funktion über ihr Symbol aus.

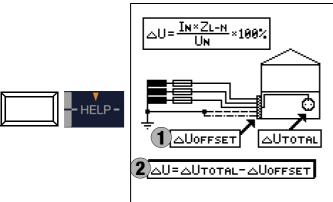
GMC-I Messtechnik GmbH 5⁻

14.1 Spannungsfall-Messung (bei Z_{IN}) – Funktion ΔU

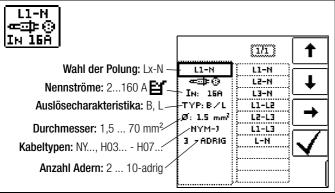
Bedeutung und Anzeige von ΔU (nach DIN VDE 100-600)

Der Spannungsfall vom Schnittpunkt zwischen Verteilungsnetz und Verbraucheranlage bis zum Anschlusspunkt eines elektrischen Verbrauchsmittels (Steckdose oder Geräteanschlussklemme) soll nicht größer als 4% der Nennspannung des Netzes sein.

Berechnung des Spannungsfalls (ohne Offset):

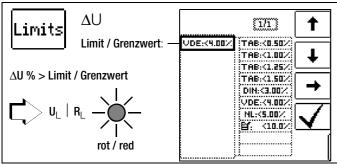

 $\Delta U = Z_{L-N} \bullet Nennstrom der Sicherung$

Berechnung des Spannungsfalls (mit Offset): $\Delta U = (Z_{L-N^-} Z_{OFFSET}) \bullet Nennstrom der Sicherung$


 ΔU in % = 100 • $\Delta U / U_{L-N}$

Zum Messverfahren und Anschluss siehe auch Kapitel 9.

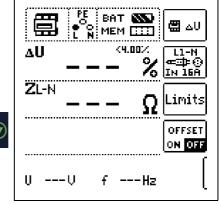
Anschluss und Messaufbau



Parameter einstellen

Hinweis: Bei Änderung des Nennstroms I_N mit vorhandenem ΔU_{OFFSET} wird der Offsetwert automatisch angepasst.

Grenzwerte einstellen


- TAB Grenzwerte nach den Technischen Anschlussbedingungen für den Anschluss an das Niederspannungsnetz zwischen Verteilnetz und Messeinrichtung
- DIN Grenzwert nach DIN 18015-1: ΔU < 3% zwischen Messeinrichtung und Verbraucher
- VDE Grenzwert nach DIN VDE 0100-520: ΔU < 4% zwischen Verteilnetz und Verbraucher (hier einstellbar bis 10%)

NL Grenzwert nach NIV: ΔU < 5%

Messung ohne OFFSET

Gehen Sie hierzu folgendermaßen vor:

Stellen Sie **0FFSET** von ON auf OFF.

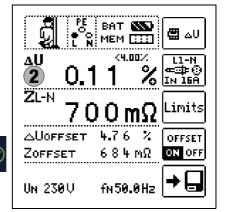
OFFSET (in %) ermitteln

Gehen Sie hierzu folgendermaßen vor:

- Stellen Sie 0FFSET von OFF auf ON. "ΔU0FFSET = 0.00 %" wird eingeblendet.
- Schließen Sie die Prüfsonde an den Übergabepunkt (Messeinrichtung/Zähler) an.
- Lösen Sie die Messung des Offsets mit IΔ_N aus.

Zunächst ertönt ein Intervall-Warnton und ein blinkender Hinweis wird eingeblendet, um zu verhindern, dass ein bereits gespeicherter Offsetwert aus Versehen gelöscht wird.

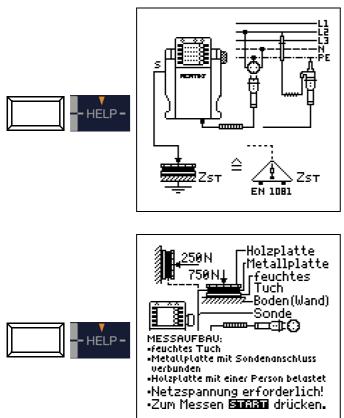
⇒ Starten Sie durch nochmaliges Drücken der Auslösetaste die Offsetmessung oder brechen Sie diese durch Drücken der Taste ▼ 0N/START (hier = ESC) ab.



 $\Delta \text{U0FFSET}$ x.xx % wird angezeigt, wobei x.xx einen Wert zwischen 0,00 und 99,9 % annehmen kann.

Eine Fehlermeldung erscheint durch Pop-Up-Fenster bei Z > 10 Ω .

Messung mit OFFSET starten



14.2 Messen der Impedanz isolierender Fußböden und Wände (Standortisolationsimpedanz) – Funktion Z_{ST}

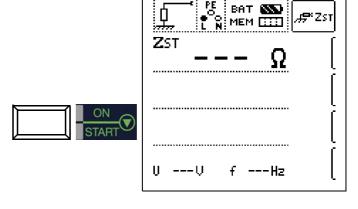
Messverfahren

Das Gerät misst die Impedanz zwischen einer belasteten Metallplatte und der Erde. Als Wechselspannungsquelle wird die am Messort vorhandene Netzspannung verwendet. Die Ersatzschaltung von Z_{ST} wird als Parallelschaltung betrachtet.

Anschluss und Messaufbau

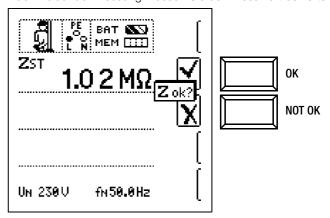
Hinweis: Verwenden Sie den Messaufbau wie unter Kap. 11.2 (Dreiecksonde) oder den nachfolgend beschriebenen.

- ⇒ Bedecken Sie den Fußboden bzw. die Wand an ungünstigen Stellen, z. B. an Fugen oder Stoßstellen von Fußbodenbelägen, mit einem feuchten Tuch von ca. 270 mm x 270 mm.
- Bringen Sie auf das feuchte Tuch die Sonde 1081 und belasten diese bei Fußböden mit einem Gewicht von 750 N/75 kg (eine Person) oder bei Wänden mit 250 N/25 kg (z. B. mit der durch einen Handschuh isolierten Hand gegen die Wand drücken).
- Stellen Sie eine leitende Verbindung mit der Sonde 1081 her und verbinden Sie den Anschluss mit der Sondenanschlussbuchse des Gerätes.
- Schließen Sie das Gerät mit dem Prüfstecker an einer Netzdose an.



Achtung!

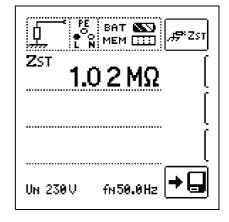
Berühren Sie die Metallplatte oder das feuchte Tuch nicht mit bloßen Händen.


An diesen Teilen kann maximal die halbe Netzspannung anliegen! Es kann ein Strom bis max. 3,5 mA fließen! Außerdem würde der Messwert verfälscht.

Messung starten

Messwert beurteilen

Nach Ablauf der Messung müssen Sie den Messwert bewerten:

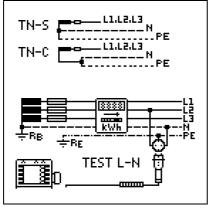

Die Widerstandswerte sind an mehreren Stellen zu messen, damit eine ausreichende Beurteilung möglich ist. Der gemessene Widerstand darf an keiner Stelle den Wert von 50 k Ω unterschreiten. Ist der gemessene Widerstand größer als 30 M Ω , so wird im Anzeigefeld immer $Z_{ST}>~30.0$ M Ω angezeigt.

Bei Bewertung mit "NOT OK" erfolgt eine Fehlersignalisierung über die rot leuchtende **LED UL/RL**.

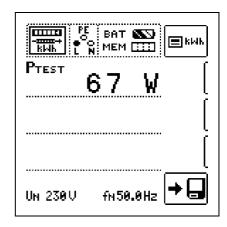
Zur Beurteilung der Messwerte siehe auch Tabelle 5 auf Seite 89.

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

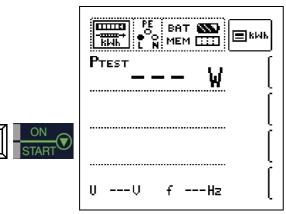
Messwert speichern



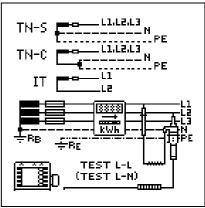
14.3 Prüfung des Zähleranlaufs mit Schutzkontaktstecker – Funktion kWh (nicht SECULIFE IP)


Der Anlauf von Energieverbrauchszählern kann hier getestet werden.

Anschluss L – N Schutzkontaktstecker


Messwert speichern

Sonderfall

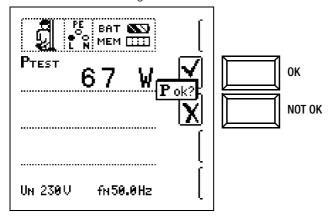

Der Anlauf von Energieverbrauchszählern, die zwischen L-L oder L-N geschaltet sind, kann hier getestet werden.

Messung starten

Anschluss L – L 2-Pol-Adapter

Der Zähler wird mithilfe eines internen Lastwiderstands und einem Prüfstrom von ca. 250 mA geprüft. Nach Drücken der Taste Start wird die Prüfleistung angezeigt und Sie können innerhalb der nächsten 5 s prüfen, ob der Zähler ordnungsgemäß anläuft. Das Piktogramm für "RUN" wird eingeblendet.

TN-Netze: Es müssen nacheinander alle 3 Phasen (Außenleiter) gegen N geprüft werden.


In anderen Netzen müssen alle Außenleiter (aktive Leiter) gegeneinander geprüft werden.

Wird eine Mindestleistung nicht erreicht, so wird die Prüfung nicht gestartet oder abgebrochen.

Messwert beurteilen

Nach Ablauf der Messung müssen Sie den Messwert bewerten:

Bei Bewertung mit "NOT OK" erfolgt eine Fehlersignalisierung über die rot leuchtende **LED UL/RL**.

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

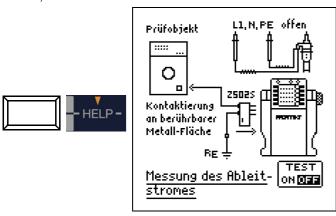
Hinweis

Falls keine Schutzkontaktsteckdosen verfügbar sind, können Sie den 2-Pol-Adapter verwenden. Hierbei müssen Sie die Prüfspitze PE (L2) mit N kontaktieren und die Messung starten.

Falls Sie die Prüfspitze PE (L2) bei der Zähleranlaufmessung mit PE kontaktieren, fließen ca. 250 mA über den Schutzleiter und ein evtl. vorgelagerter RCD schaltet ab.

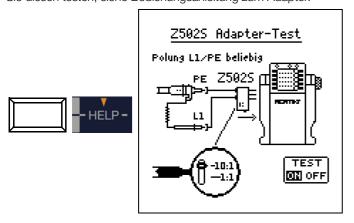
14.4 Ableitstrommessung mit Ableitstrommessadapter PRO-AB als Zubehör – Funktion I_I (nur MXTRA & SECULIFE IP)

Anwendung

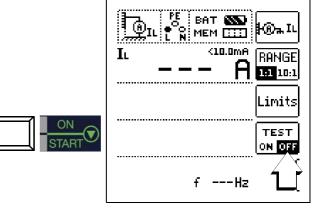

Die Messung der Berührspannung nach DIN VDE 0107-10 und die Messung von dauernd fließenden Ableit- und Patientenhilfsströmen gemäß IEC 62353 (VDE 0750-1) / IEC 601-1 / EN 60601-1:2006 (Medizinische elektrische Geräte – Allgemeine Festlegungen für die Sicherheit) ist mit dem Zubehör Ableitstrommessadapter PRO-AB als Vorschaltgerät für das Prüfgerät PROFITEST MXTRA möglich.

Gemäß o. g. Vorschriften sind mit diesem Messadapter Ströme bis zu 10 mA zu messen. Um diesen Strommessbereich vollständig mit dem am Prüfgerät vorhandenen Messeingang (zweipoliger Zangenmesseingang) abdecken zu können, verfügt das Messgerät über eine Bereichsumschaltung mit den Übertragungsverhältnissen 10:1 und 1:1. Im Bereich 10:1 erfolgt eine Spannungsteilung in demselben Verhältnis.

Anschluss und Messaufbau


Zur Ableitstrommessung muss der Adapter mit seinen Messausgängen in die linksseitig am PROFITEST MXTRA liegenden Messeingänge (zweipoliger Zangeneingang und Sondeneingang), eingesteckt werden.

Ein beliebiger Eingang des Ableitstrommessadapters wird mit einer Messleitung mit der Bezugserde (z. B. sicherer Erder/Potenzialausgleich) verbunden. Der andere Eingang wird mittels einer weiteren Messleitung mit dem metallischen Gehäuse (berührbares Teil) des Messobjektes kontaktiert (Prüfspitze/Krokodilklemme).


Test des Adapters PRO-AB

Vor Einsatz des Adapters und in regelmäßigen Abständen sollten Sie diesen testen, siehe Bedienungsanleitung zum Adapter.

Messablauf

Für die Durchführung der Messung siehe auch die Bedienungsanleitung zum Ableitstrommessadapter PRO-AB.

Achtung!

Während der Ableitstrommessung sollte sich der Prüfstecker im Aufnahmeschacht befinden. Dieser darf keinesfalls mit Anlagenteilen (auch nicht PE/Erdpotenzial) verbunden werden (Messwerte können sonst verfälscht werden.

Mit der Taste "START" wird die Messung gestartet bzw. wieder gestoppt. Die Ableitstrommessung ist eine Dauermessung, d. h. diese läuft solange, bis sie vom Anwender wieder beendet wird. Während der Messung wird permanent der aktuelle Messwert angezeigt.

Hinweis

Zur Durchführung der Messung muss der Selbsttest im Menü (Funktionstaste TEST 0N/0FF) deaktiviert (0FF) sein.

Beginnen Sie immer mit dem großen Messbereich (10:1) außer bei sicher zu erwartenden kleinen Messwerten mit dem kleinen Messbereich (1:1). Der Messbereich muss sowohl am Messadapter als auch im Menü mit der entsprechenden Funktionstaste (RANGE) eingestellt werden. Es ist sicherzustellen, dass die Bereicheinstellungen am Adapter und Prüfgerät immer identisch sind, um das Messergebnis nicht zu verfälschen.

Je nach Größe der Messwerte kann bzw. muss (bei Bereichsüberlauf) die Bereichseinstellung am Messadapter und am Prüfgerät manuell korrigiert werden.

Über die Funktionstaste "Limits" lassen sich individuelle Grenzwerte einstellen. Eine Überschreitung wird durch die rote Grenzwert-LED am Prüfgerät signalisiert.

14.5 Prüfen von Isolationsüberwachungsgeräten – Funktion IMD (nur PROFITEST MXTRA & SECULIFE IP)

Anwendung

Isolationsüberwachungsgeräte IMDs (Insulation Monitoring Device) oder Erdschlussanzeigeeinrichtungen (Earthfault Detection System) werden in IT-Netzen eingesetzt, um die Einhaltung eines minimalen Isolationswiderstandes zu überwachen, wie in DIN VDE 0100-410 gefordert.

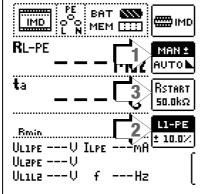
Sie werden in Stromversorgungen eingesetzt, bei denen ein einpoliger Erdschluss nicht zum Ausfall der Stromversorgung führen darf z. B. bei Operationssälen oder Photovoltaikanlagen.

Die Isolationswächter können mithilfe dieser Sonderfunktion überprüft werden. Hierzu wird ein einstellbarer Isolationswiderstand nach Drücken der Taste **0N/START** zwischen eine der zwei Phasen des zu überwachenden IT-Netzes und Erde geschaltet. Der Widerstand kann während der Prüfung in der Betriebsart manueller Ablauf "MAN±" über die Softkey-Tasten "+" oder "–" verändert oder in der Betriebsart "AUTO" automatisch von R_{max} bis R_{min} variiert werden. Die Prüfung wird durch abermaliges Drücken der Taste **0N/START** beendet.

Die Zeit, innerhalb welcher der aktuelle Widerstandswert seit der Werteänderung am Netz war, wird angezeigt. Das Anzeige- und Ansprechverhalten des IMD kann abschließend über die Softkey-Tasten "OK" oder "NOT OK" bewertet und protokolliert werden.

Anschluss L - N

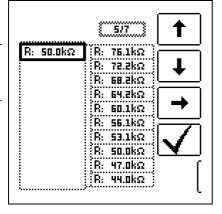
Parameter einstellen

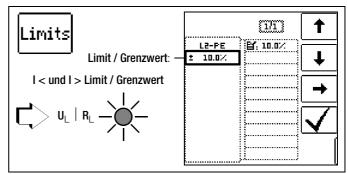

- MAN/AUTO (1)

Umschalten zwischen manuellem Messablauf MAN und automatischem Messablauf AUTO

Leiterbezug und Grenzwerte ändern (2)

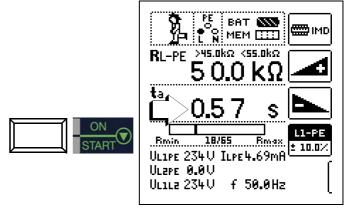
Schnelles Umschalten zwischen L1-PE und L2-PE (auch während der Messung) durch Taste $|\Delta_N|$




- Startwiderstand ändern (3)

Hier können Sie den Widerstand auswählen mit dem jede Messreihe beim manuellen Messablauf beginnt.

Die Funktion GOME-Setting (Auslieferungszustand) setzt den Startwert auf den Widerstandswert 50,0 K Ω .



Grenzwerte für R_{I-PF} in % einstellen

Die Grenzwerte werden prozentual zu dem aktuell eingeblendeten Wert für $R_{L\text{-PE}}$ berechnet und angezeigt.

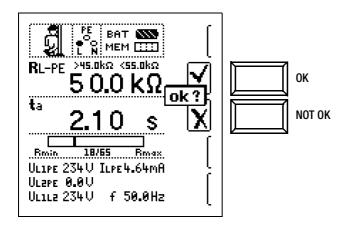
Messablauf manuell

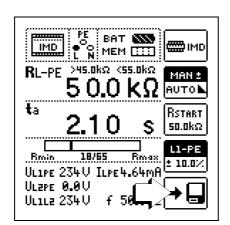
Mit der Taste "START" wird die Messung und die Stoppuhr (siehe Pfeil) gestartet.

Die Stoppuhr wird mit jeder Änderung des WIderstandwertes und bei Umschaltung der belasteten Phase (L1/L2) neu gestartet. Während der Messung kann der Leiterbezug (L1-PE oder L2-PE)

Während der Messung kann der Leiterbezug (L1-PE oder L2-PE) über die Taste $I_{\Delta N}$ oder der Widerstandswert über die Tasten + und – geändert werden, ohne dass die Messung unterbrochen wird. In beiden Fällen wird die Stoppuhr zurückgesetzt.

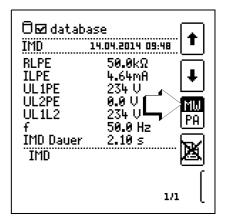
Widerstandswert erhöhen + oder erniedrigen – (die Einstellwerte selbst sind fest vorgegeben!)

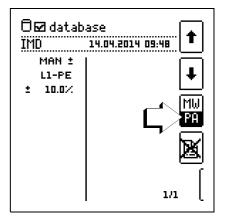

Der Positions-Balken ermöglicht Ihnen eine schnelle Orientierung. Die Zahlenkombination darunter gibt den aktuellen Schritt von maximal 65 Schritten an: hier 17 von 65.


Messablauf automatisch

Beim automatischen Messablauf werden alle Widerstandswerte zwischen dem Maximalwert Rmax (2,51 M Ω) und dem Minimalwert Rmin (20 k Ω) in 65 Schritten durchlaufen, wobei die Schrittdauer 2 s beträgt.

Beurteilung


Damit die Messung beurteilt werden kann, muss diese gestoppt werden. Dies gilt für die manuelle wie für die automatische Messung. Hierzu drücken Sie die Taste "START" oder "ESC". Die Stoppuhr wird angehalten und der Beurteilungs-Bildschirm eingeblendet.



Aufruf gespeicherter Messwerte

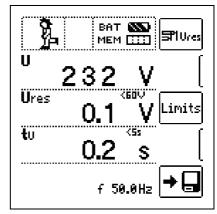
Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden, siehe auch Kapitel 16 4

Über die nebenstehende Taste (MW: Messwert/PA: Parameter) können Sie sich die Einstellparameter zu dieser Messung anzeigen lassen.

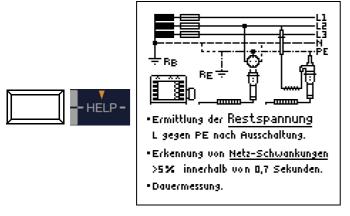
14.6 Restspannungsprüfung – Funktion Ures (nur MXTRA)

Anwendung

Die Vorschrift EN 60204 fordert, dass an jedem berührbaren aktiven Teil einer Maschine, an welchem während des Betriebs eine Spannung von mehr als 60 V anliegt, nach dem Abschalten der Versorgungsspannung die Restspannung innerhalb von 5 s auf einen Wert von 60 V oder weniger abgesunken sein muss.


Mit dem **PROFITEST MXTRA** erfolgt die Prüfung auf Spannungsfreiheit durch eine Spannungsmessung, bei der die Entladezeit tu gemessen wird wie folgt:

Bei Spannungseinbrüchen von mehr als 5% (innerhalb von 0,7 s) der aktuellen Netzspannung wird die Stoppuhr gestartet und nach 5 s die aktuelle Unterspannung durch **Ures** angezeigt und durch die rote Diode UL/RL signalisiert.


Nach 30 s wird die Funktion beendet und mittels der Taste ESC können die Daten von Ures und tu gelöscht und die Funktion hierdurch erneut gestartet werden.

Messablauf - Dauermessung

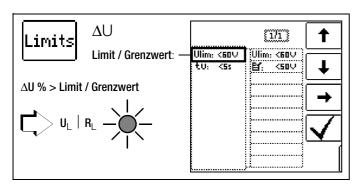
Die Prüfung ist als Dauermessung eingestellt, da die Restspannungsprüfung automatisch getriggert wird und die Spannungsmessung aus Sicherheitsgründen immer aktiv bleibt.

Anschluss

Hinweis

Werden z. B. beim Abschalten einer Maschine – z. B. durch das Trennen von Steckverbindungen – Leiter freigelegt, die nicht gegen direktes Berühren geschützt sind, so beträgt die maximal zulässige Entladezeit 1 s!

Limits



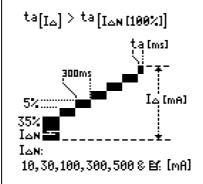
- - Anschluss: fest: <5 Sek. beweglich: <1 Sek.

Editier-Bereich: >1 <30 Sek.

Bei sprunghaftem Unterschreiten des Ures-Wertes wird dieser Wert und das Zeitfenster erfasst und sie erscheinen in den entsprechenden LCD-Zeilen Ures und ty.

Grenzwerte einstellen

14.7 Intelligente Rampe – Funktion ta+l∆ (nur PROFITEST MXTRA)

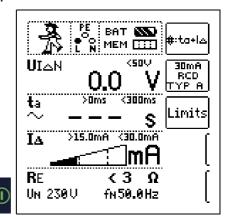

14.7.1 Anwendung

Der Vorteil dieser Messfunktion gegenüber den Einzelmessungen von I_{AN} und t_A ist die gleichzeitige Messung von Abschaltzeit und Abschaltstrom durch stufenförmig ansteigenden Prüfstrom, wobei der RCD nur ein einziges mal ausgelöst werden muss.

Die intelligente Rampe wird zwischen Stromanfangswert (35% $\rm I_{\Delta N})$ und Stromendwert (130% $I_{\Delta N}$) in zeitliche Abschnitte zu je 300 ms unterteilt. Hieraus ergibt sich eine Stufung, wobei jede Stufe einem konstanten Prüfstrom entspricht, der maximal 300 ms lang fließt, sofern keine Auslösung stattfindet.

Als Ergebnis wird der

Anschluss



Auslösestrom als auch die Auslösezeit gemessen und angezeigt.

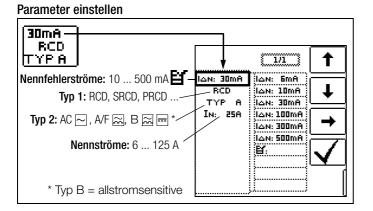
Messung der Berührspannung starten

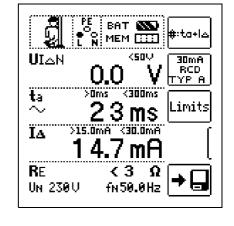
Auslöseprüfung starten

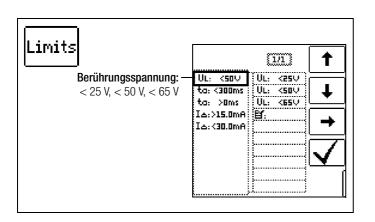
BAT 🚳

MEM []

#:ta+le






Messergebnis

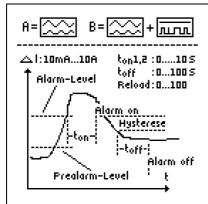
IAN

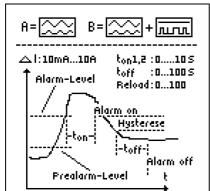
Prüfen von Differenzstrom-Überwachungsgeräten 14.8 - Funktion RCM (nur PROFITEST MXTRA)

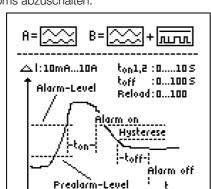
Allgemeines

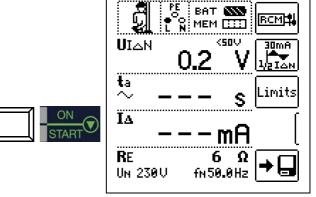
Differenzstrom-Überwachungsgeräte RCMs (Residual Current Monitor) überwachen den Differenzstrom in elektrischen Anlagen und zeigen diesen kontinuierlich an. Wie bei Fehlerstromschutzeinrichtungen können externe Schalteinrichtungen angesteuert werden, um die Spannungsversorgung bei Überschreiten eines bestimmten Differenzstroms abzuschalten.

Der Vorteil eines RCMs liegt jedoch darin, dass der Anwender rechtzeitig über Fehlerströme in der Anlage informiert wird, bevor es zur Abschaltung kommt.

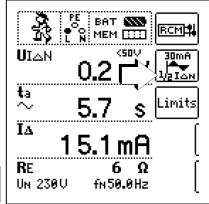

Gegenüber den Einzelmessungen von I_{AN} und t_A muss hier das Messergebnis manuell beurteilt werden.


Wird ein RCM in Verbindung mit einer externen Schalteinrichtung betrieben, so ist diese Kombi-


Anschluss


nation wie ein RCD zu prüfen.

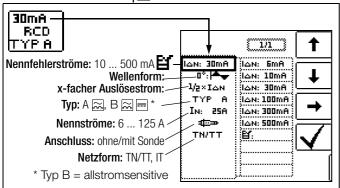
HELP •

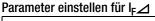


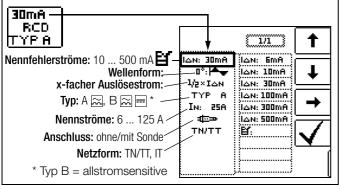
Nichtauslöseprüfung mit $1/2 \times I_{\Lambda N}$ und $10 \times I_{\Lambda N}$

Berührungsspannung messen

RCM

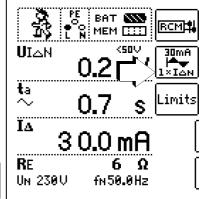

Alarm1

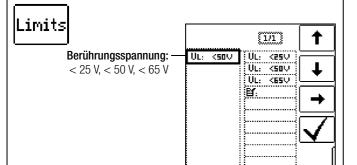

lalarme



Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

tung mit "NOT OK" (falls Fehlalarm) erfolgt eine Fehlersignalisie-



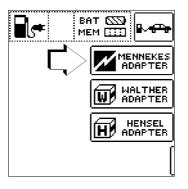


Auslöseprüfung mit 1 x IAN

rung über die rot leuchtende LED UL/RL.

- Messung von Signal-Ansprechzeit (Stoppuhrfunktion) mit dem vom Prüfgerät erzeugten Fehlerstrom

Die Messung muss unmittelbar nach der Signalislierung des Fehlerstroms manuell über 0N/START oder $I_{\Delta N}$ gestoppt werden, um die Auslösezeit zu dokumentieren.


Bei Bewertung mit "NOT OK" erfolgt eine Fehlersignalisierung über die rot leuchtende LED UL/RL.

Erst nach Ihrer Bewertung kann der Messwert gespeichert und damit ins Messprotokoll aufgenommen werden.

14.9 Überprüfung der Betriebszustände eines Elektrofahrzeugs an E-Ladesäulen nach IEC 61851 (nur MTECH+ & MXTRA)

Eine Ladestation ist ein zum Laden von Elektrofahrzeugen vorgesehenes Betriebsmittel gemäß IEC 61851, das als wesentliche Elemente die Steckvorrichtung, einen Leitungsschutz, eine Fehlerstrom-Schutzeinrichtung (RCD), einen Leistungsschalter sowie eine Sicherheits-Kommunikationseinrichtung (PWM) enthält. Abhängig vom Einsatzort können ggf. noch weitere Funktionseinheiten wie Netzanschluss und Zählung hinzukommen.

Auswahl des Adapters (Prüfbox)

Simulation der Betriebszustände nach IEC 61851 mit der Prüfbox von MENNEKES

(Status A - E)

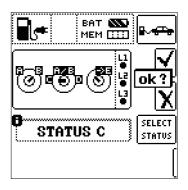

Die MENNEKES Prüfbox dient ausschließlich zur Simulation der unterschiedlichen Betriebszustände eines fiktiv angeschlossenen Elektrofahrzeuges an einer Ladeeinrichtung. Die Einstellungen zu den simulierten Betriebszuständen sind der Bedienungsanleitung der Prüfbox zu entnehmen.

Am MTECH+ oder MXTRA können die simulierten Betriebszustände als Sichtprüfung gespeichert und in der ETC dokumentiert werden

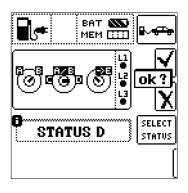
Den jeweils zu prüfenden Betriebszustand (Status) wählen Sie über die Taste **SECLECT STATUS** am Prüfgerät **MTECH**+ oder **MXTRA**.

Status A - Ladeleitung nur mit Ladepunkt verbunden

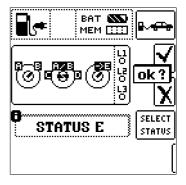
- · CP-Signal wird eingeschaltet,
- Spannung zwischen PE und CP beträgt 12 V.


Status B – Ladeleitung mit Ladepunkt und Fahrzeug verbunden

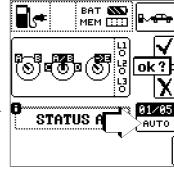
- · Ladeleitung wird am Ladepunkt und im Fahrzeug verriegelt,
- Noch keine Ladebereitschaft am Fahrzeug,
- Spannung zwischen PE und CP +9 V / –12 V.


Status C – Nicht gasendes Fahrzeug erkannt

- Ladebereitschaft vom Fahrzeug / Leistung wird zugeschaltet,
- Spannung zwischen PE und CP +6 V / -12 V.


Status D – Gasendes Fahrzeug erkannt

- Ladebereitschaft vom Fahrzeug / Leistung wird zugeschaltet,
- Spannung zwischen PE und CP +3 V / -12 V.


Status E – Leitung wird beschädigt

- Kurzschluss zwischen PE und CP,
- Ladeleitung wird am Ladepunkt entriegelt,
- Spannung zwischen PE und CP +0 V.

Halbautomatischer Wechsel der Betriebszustände (Stati)

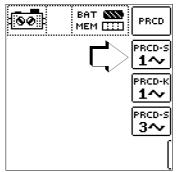
Alternativ zum manuellen Statuswechsel über das Parametermenü der Softkey-Taste SECLECT STATUS am Prüfgerät ist eine schnelle und komfortable Umschaltung zwischen den Stati möglich. Hierzu müssen Sie den Statusparameter AUTO auswählen. Nach jedem Beantworten und Speichern einer Sichtprüfung wird automatisch zum nächsten Status umgeschaltet, wobei die Tasteneinblendung 01/05 A/E entspricht

(01 = A, 02 = B, 03 = C, 04 = D, 05 = E).

Ein Überspringen von Statusvarianten ist durch Drücken der Taste $I_{\Lambda N}$ am Prüfgerät oder am Prüfstecker möglich.

14.10 Prüfabläufe zur Protokollierung von Fehlersimulationen an PRCDs mit dem Adapter PROFITEST PRCD (nur MXTRA)

Folgende Funktionen sind bei Anschluss des Prüfgeräts **PROFITEST MXTRA** an den Prüfadapter **PROFITEST PRCD** möglich:

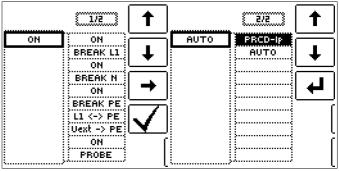

- Drei Prüfabläufe sind voreingestellt:
 - PRCD-S (1-phasig/3-polig)
 - PRCD-K (1-phasig/3-polig)
 - PRCD-S (3-phasig/5-polig)
- Das Prüfgerät führt halbautomatisch durch sämtliche Prüfschritte:
 - 1-phasige PRCDs:
 - PRCD-S: 11 Prüfschritte
 - PRCD-K: 4 Prüfschritte
 - 3-phasige PRCDs:
 - PRCD-S: 18 Prüfschritte
- Jeder Prüfschritt wird durch den Anwender beurteilt und bewertet (OK/nicht OK) für eine spätere Protokollierung.
- Messen des Schutzleiterwiderstands des PRCDs durch die Funktion R_{LO} am Prüfgerät. Beachten Sie, dass es sich bei der Schutzleitermessung um eine modifizierte RLO-Messung mit Rampenverlauf für PRCDs handelt, siehe Kapitel 12.
- Messen des Isolationswiderstands des PRCDs durch die Funktion R_{ISO} am Prüfgerät, siehe Kapitel 11.
- Auslöseprüfung mit Nennfehlerstrom durch die Funktion I_F
 am Prüfgerät, siehe Kapitel 7.3.
- Messung der Auslösezeit durch die Funktion I_{ΔN} am Prüfgerät, siehe Kapitel 7.3.
- Varistorprüfung beim PRCD-K: Messung über ISO-Rampe, siehe Kapitel 11.

Achtung!

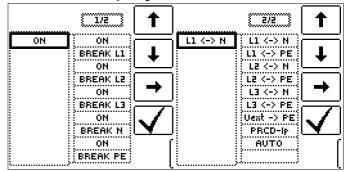
Lesen Sie vor dem Anschluss des **PROFITEST MXTRA** an den PRCD-Adapter unbedingt die Bedienungsanleitung zum **PROFITEST PRCD**.

14.10.1 Auswahl des zu prüfenden PRCDs

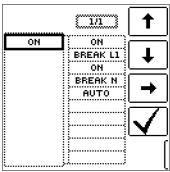
14.10.2 Parametereinstellungen


Bedeutung der Symbole für die jeweilige Fehlersimulation

Schalter- stellung	Symbole b		Bedeutung der Symbole
PROFI- TEST PRCD	Parameter- einstell.	Menü- anzeige	
ON -	ON	1~0N	1-phasigen PRCD aktivieren
ON	ON	3~0N	3-phasigen PRCD ist aktivieren
-∦-	BREAK Lx	-{}-	Leitertrennung
Ø	Lx <-> PE Lx <-> N	Q	Leitertausch zwischen Außen- leiter und PE oder Neutralleiter
PE-U _{EXT}	Uext -> PE	PE-UEXT	PE an Phase
ON	PROBE	<u>он</u>	Taste ON am PRCD mit Sonde kontaktieren
ON	PRCD-lp	on ⊒≢∌	Schutzleiterstrommessung mit Zangenstromwandler
	AUT0	AUT0	Halbautomatischer Wechsel der Fehlersimulationen


Parameter PRCD-S 1-phasig – 11 Parameter = 11 Prüfschritte

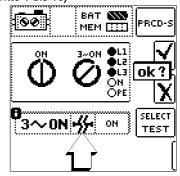
Die Parameter für die Fehlersimulationen repräsentieren zusammen mit den notwendigen Zwischenschritten zur PRCD-Aktivierung (=ON) die 11 möglichen Prüfschritte: Unterbrechung (BREAK...), Leitertausch (L1 <-> PE),


PE an Phase (Uext -> PE), Kontaktierung der Taste ON, Schutzleiterstrommessung (Bild rechts: PRCD-Ip).

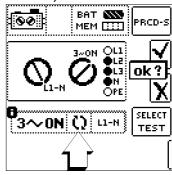
Parameter PRCD-S 3-phasig – 18 Parameter = 18 Prüfschritte

Parameter PRCD-K 1-phasig – 5 Parameter = 5 Prüfschritte

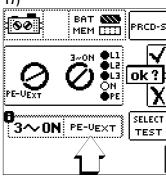
14.10.3 Prüfablauf PRCD-S (1-phasig) - 11 Prüfschritte

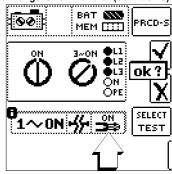

Auswahlbeispiele

Simulation Unterbrechung (Schritte 1 bis 6)

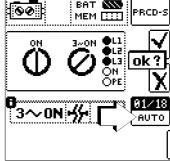

PRCD-S MEM PRCD-S ON ON OL3 ON OR X SELECT TEST

Auswahlbeispiele

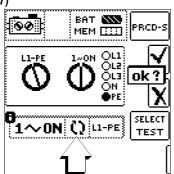

Simulation Unterbrechung (Schritte 1 bis 10)


Simulation Leitertausch (Schritte 11 bis 16)

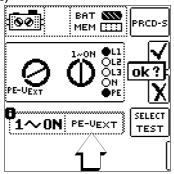
Simulation PE an Phase (Schritte 17)



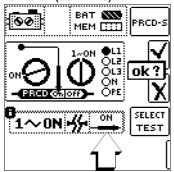
Messung des Schutzleiterstroms über Zangenstromwandler (Schritte 18)

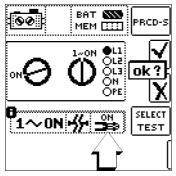

Halbautomatischer Wechsel der Fehlersimulationen (Stati)

Alternativ zum manuellen Wechsel zwischen den Fehlersimulationen über das Parametermenü der jeweiligen PRCD-Auswahl PRCD-S 1~, PRCD-K 1~ oder PRCD-S 3~ am Prüfgerät ist eine schnelle und komfortable Umschaltung zwischen den Fehlersimulationen möglich. Hierzu müssen Sie den Statusparameter AUTO auswählen. Nach jedem Beantworten und Speichern einer Sichtprü-



fung wird automatisch zur nächsten Fehlersimulation umgeschaltet. Ein Überspringen von Fehlersimulationen ist durch Drücken der Taste $I_{\Delta N}$ am Prüfgerät oder am Prüfstecker möglich.


Simulation Leitertausch (Schritt 7)


Simulation PE an Phase (Schritt 8)

Mit Sonde Taste ON am PRCD kontaktieren (Schritt 10)

Messung des Schutzleiterstroms mithilfe eines Zangenstromwandlers (Schritt 11)

14.10.4 Prüfablauf PRCD-S (3-phasig) - 18 Prüfschritte

15 Prüfsequenzen (Automatische Prüfabläufe) Funktion AUTO

Soll nacheinander immer wieder die gleiche Abfolge von Prüfungen mit anschließender Protokollierung durchgeführt werden, wie dies z. B. bei Normen vorgeschrieben ist, empfiehlt sich der Einsatz von Prüfsequenzen.

Mithilfe von Prüfsequenzen können aus den manuellen Einzelmessungen automatische Prüfabläufe zusammengestellt werden. Eine Prüfsequenz besteht aus bis zu 200 Einzelschritten, die nacheinander abgearbeitet werden.

Es wird grundsätzlich zwischen drei Arten von Einzelschritten unterschieden:

- Hinweis: der Prüfablauf wird durch Einblendung eines Hinweises als Pop-Up für den Prüfer unterbrochen. Erst nach Bestätigen des Hinweises wird der Prüfablauf fortgesetzt. Beispiel Hinweis vor der Isolationswiderstandsmessung: "Trennen Sie das Gerät vom Netz!"
- Besichtigung, Erprobung und Protokollierung: der Prüfablauf wird durch Einblendung einer Bestanden/Nicht-Bestanden-Bewertung unterbrochen, Kommentar und Ergebnis der Bewertung werden in der Datenbank abgespeichert
- Messung: Messung wie bei den Einzelmessungen der Prüfgeräte mit Speicherung und Parametrisierung

Die Prüfsequenzen werden mithilfe des Programms ETC am PC erstellt und anschließend an die Prüfgeräte übertragen.

Die Parametrisierung von Messungen erfolgt ebenfalls am PC. Die Parameter können aber noch während des Prüfablaufs vor Start der jeweiligen Messung im Prüfgerät verändert werden.

Nach einem wiederholten Start des Prüfschrittes werden wieder die in der ETC definierten Parametereinstellungen geladen.

Hinweis

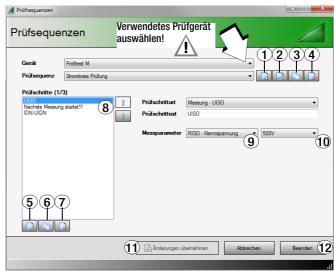
Eine Plausibilitätsprüfung der Parameter wird im Programm ETC nicht durchgeführt. Testen Sie daher die neu erstellte Prüfsequenz zunächst am Prüfgerät, bevor Sie diese in Ihrer Datenbank dauerhaft ablegen.

Grenzwerte werden z. Zt. nicht in der ETC festgelegt, sondern müssen während des automatischen Prüfablaufs angepasst werden.

Menü zur Bearbeitung von Prüfsequenzen aufrufen

Um vorhandene Prüfsequenzen bearbeiten zu können, z. B. um diese um weitere Prüfschritte zu ergänzen oder um Parametereinstellungen zu verändern, müssen diese zuvor in das PC-Programm ETC geladen werden.

Hierzu bestehen zwei Möglichkeiten:


ETC: Extras \rightarrow Prüfsequenzen \rightarrow Prüfsequenzen laden (aus Datei pruefsequenzenxyz.seg)

oder

ETC: Gerät → Prüfsequenzen → Prüfsequenzen empfangen (vom angeschlossenen Prüfgerät)

Bedienübersicht: Erstellen von Prüfseguenzen am PC

- 1 Neue Prüfsequenz erstellen Bezeichnung eingeben
- 2 Bezeichnung der ausgewählten Prüfseguenz ändern
- Ausgewählte Prüfsequenz duplizieren, (Copy) wird an den duplizierten Namen angehängt
- 4 Ausgewählte Prüfsequenz löschen
- 5 Neuen Prüfschritt für ausgewählte Prüfsequenz erstellen bzw. hinzufügen - Prüfschrittart hierzu aus Liste auswählen und Bezeichnung übernehmen
- 6 Ausgewählten Prüfschritt duplizieren
- 7 Ausgewählten Prüfschritt löschen
- 8 Reihenfolge des ausgewählten Prüfschritts ändern
- 9 Messparameter für ausgewählte Prüfschrittart aus Liste auswählen
- 10 Einstellung für Messparameter aus Liste auswählen
- 11 Änderung beim Messparameter übernehmen
- 12 Menü Prüfsequenzen schließen

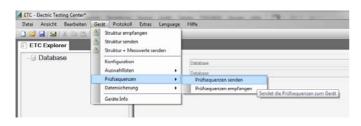
Prüfsequenzen im Programm ETC auf dem PC speichern

Wir empfehlen, die Prüfsequenzen des Auslieferzustands, geänderte sowie neu angelegte Prüfsequenzen über den Befehl "Extras → Prüfsequenzen → Prüfsequenzen speichern" auf dem PC oder anderen Speichermedien jeweils unter einem Dateinamen (pruefsequenzenxyz.seg) abzulegen. Hierdurch soll der Verlust von Daten, ausgelöst durch bestimmte Verwaltungsoperationen, vermieden werden, siehe folgende Hinweise.

Da maximal 10 Prüfsequenzen zum Prüfgerät übertragen werden können, sollten nicht mehr als 10 Prüfseguenzen in einer Datei gespeichert werden.

Über den Befehl "Extras → Prüfsequenzen → Prüfsequenzen laden" können die in einer Datei abgelegten Prüfsequenzen jederzeit wieder zurück in das Programm ETC geladen werden. Zur erneuten Bearbeitung wird der Befehl "Extras \rightarrow Prüfsequenzen \rightarrow Prüfsequenzen bearbeiten" gewählt.

Bitte beachten Sie, dass die im Programm ETC aktiven Prüfsequenzen durch folgende Aktionen gelöscht werden:

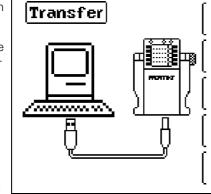

- durch Empfang von Prüfsequenzen vom Prüfgerät (ETC: Gerät → Prüfsequenzen → Prüfsequenzen empfangen)
- durch Wechsel der Anwendersprache (ETC: Language → ...)
- durch Sichern der Daten vom Prüfgerät (ETC: Gerät → Datensicherung → sichern)

Bitte beachten Sie, dass die ins Prüfgerät geladenen Prüfsequenzen durch folgende Aktionen im Prüfgerät gelöscht werden:

- durch Empfang von Auswahllisten vom PC (ETC: Gerät → Auswahllisten → Auswahllisten senden)
- durch Empfang neuer Prüfsequenzen vom PC (ETC: Gerät → Prüfsequenzen → Prüfsequenzen senden)
- durch Übertragen der gesicherten Daten zum Prüfgerät (ETC: Gerät → Datensicherung → wiederherstellen)
- durch Rücksetzen auf Werkseinstellungen (Schalterstellung SETUP → Taste GOME SETTING)
- durch Firmware-Update
- durch Wechsel der Anwendersprache (Schalterstellung SETUP → Taste CULTURE)
- durch Löschen der gesamtem Datenbank im Prüfgerät

Prüfsequenzen vom PC zum Prüfgerät übertragen

Nach Aufrufen des folgenden ETC-Befehls "Gerät ightarrow Prüfsequenzen ightarrow Prüfsequenzen senden" werden alle angelegten Prüfsequenzen (maximal 10) zum angeschlossenen Prüfgerät übertragen.



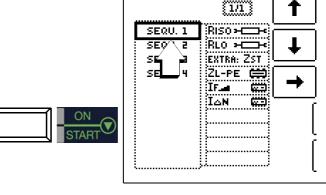
Während der Übertragung der Prüfsequenzen wird der obige Fortschritts-Bargraph am PC eingeblendet und die nebenstehende Darstellung auf dem Display des Prüfgeräts.

Nach vollständiger Übertragung der Daten wechselt die Anzeige zum Speichermenü "database".

Durch Drücken von **ESC** gelangen Sie zurück zur

Anzeige des Messmenüs der jeweiligen Schalterstellung.

Schalterstellung AUTO am Prüfgerät wählen



In der Drehschalterstellung AUTO werden alle im Gerät vorhanden Prüfsequenzen angezeigt, siehe Abb.15.1.

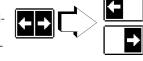
Sind keine Prüfsequenzen im Gerät vorhanden, erscheint die Meldung "NO DATA".

Prüfsequenz am Prüfgerät auswählen und starten

Bild 15.1

Mit der Taste **START** wird die ausgewählte Prüfsequenz (hier: SEQU.1) gestartet.

Bei Ausführung eines Prüfschrittes der Art Messung wird der von den Einzelmessungen bekannte Bildschirmaufbau angezeigt. Statt des Speicher- und Akkusymbols wird in der Kopfzeile die aktuelle Prüfschrittnummer dargestellt (hier: Schritt 01 von 06), siehe Abb. 15.2. Nach zweimaligem Drücken der Taste "Speichern" wird der nächste Prüfschritt eingeblendet.

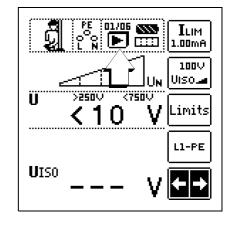

Parameter und Grenzwerte einstellen

Parameter und Grenzwerte können auch während des Ablaufs einer Prüfsequenz bzw. vor Start der jeweiligen Messung geändert werden. Die jeweilige Änderung greift nur in den aktiven Prüfablauf ein und wird nicht gespeichert.

Überspringen von Prüfschritten

Zum Überspringen von Prüfschritten bzw. Einzelmessungen gibt es zwei Möglichkeiten:

- Anwahl der Prüfsequenz, Wechsel mithilfe des Cursors in die rechte Spalte Prüfschritte, Auswahl des x-ten Prüfschritts und drücken der Taste START.
- Innerhalb einer Prüfsequenz wird durch Drücken der Navigationstaste Cursor links-rechts das Navigationsmenü aufgerufen. Mit den jetzt getrennt eingeblendeten Cursortasten kann zum vorherigen


oder nächsten Prüfschritt gesprungen werden. Mit **ESC** kann das Navigationsmenü wieder verlassen und der aktuelle Prüfschritt wieder aufgerufen werden.

Prüfsequenz abbrechen oder beenden

Eine aktive Sequenz wird durch ESC mit anschließender Bestätigung abgebrochen.

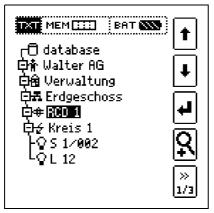
Nach Ablauf des letzten Prüfschritts wird "Sequenz beendet" eingeblendet. Durch Bestätigen dieser Meldung wird wieder das Ausgangsmenü "Liste der Prüfsequenzen" angezeigt.

Bild 15.2

16 Datenbank

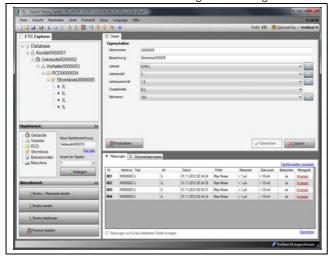
16.1 Anlegen von Verteilerstrukturen allgemein

Im Prüfgerät **PROFITEST MASTER** kann eine komplette Verteilerstruktur mit Stromkreis- bzw. RCD-Daten angelegt werden. Diese Struktur ermöglicht die Zuordnung von Messungen zu den Stromkreisen verschiedener Verteiler, Gebäude und Kunden.


Zwei Vorgehensweisen sind möglich:

 Vor Ort bzw. auf der Baustelle: Verteilerstruktur im Prüfgerät anlegen.
 Es kann eine Verteilerstruktur im Prüfgerät mit maximal
 50000 Strukturelementen angelegt

> werden, die im Flash-Speicher des


Prüfgerätes gesi-

chert wird.

oder

 Erstellen und Speichern einer vorliegenden Verteilerstruktur mithilfe des PC-Protokollierprogramms ETC (Electric Testing Center) auf dem PC, siehe Hilfe > Erste Schritte (F1). Anschließend wird die Verteilerstruktur an das Prüfgerät übertragen.

Hinweis zum Protokollierprogramm ETC

Vor der Anwendung des PC-Programms sind folgende Arbeitsschritte erforderlich:

USB-Gerätetreiber installieren

(erforderlich für den Betrieb des **PROFITEST MASTER** am PC): Das Programm **GMC-I Driver Control** zur Installation des USB-Gerätetreibers finden Sie auf unserer Homepage zum Downloaden:

http://www.gossenmetrawatt.com

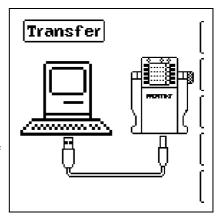
- \rightarrow Produkte $\bar{\ }\rightarrow$ Software \rightarrow Software für Prüfgeräte
- $\rightarrow {\sf Dienstprogramme} \rightarrow {\sf Driver} \ {\sf Control}$

PC-Protokollierprogramm ETC installieren:

Sie können die aktuellste Version der ETC von unserer Homepage im Bereich **mygmc** kostenlos als ZIP-Datei herunterladen, sofern Sie Ihr Prüfgerät registriert haben:

http://www.gossenmetrawatt.com

- → Produkte → Software → Software für Prüfgeräte
- ightarrow Protokollsoftware ohne Datenbank ightarrow ETC ightarrow myGMC ightarrow zum Login

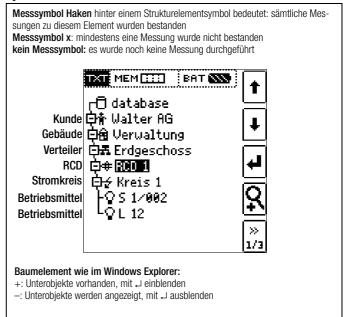

16.2 Übertragung von Verteilerstrukturen

Folgende Übertragungen sind möglich:

- Übertragung einer Verteilerstruktur vom PC an das Prüfgerät.
- Übertragung einer Verteilerstruktur einschließlich der Messwerte vom Prüfgerät zum PC.

Zur Übertragung von Strukturen und Daten zwischen Prüfgerät und PC müssen beide über ein USB-Schnittstellenkabel verbunden sein.

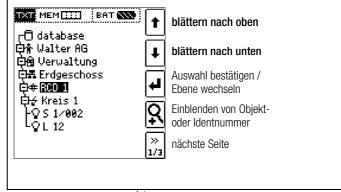
Während der Übertragung von Strukturen und Daten erscheint die folgende Darstellung auf dem Display.


16.3 Verteilerstruktur im Prüfgerät anlegen

Übersicht über die Bedeutung der Symbole zur Strukturerstellung

Symbo	le	Bedeutung
Haup- tebene	Unter- ebene	
		Speichermenü Seite 1 von 3
1		Cursor OBEN: blättern nach oben
•		Cursor UNTEN: blättern nach unten
4	白	ENTER: Auswahl bestätigen + → – in untergeordnete Ebene wechseln (Verzeichnisbaum aufklappen) oder - → + in übergeordnete Ebene wechseln (Verzeichnisbaum schließen)
₽		Einblenden der vollständigen Strukturbezeichnung (max. 63 Zeichen) oder Identnummer (25 Zeichen) in einem Zoomfenster
	12 10 12 12 10	Temporäres Umschalten zwischen Strukturbe- zeichnung und Identnummer. Diese Tasten haben keinen Einfluss auf die Haup- teinstellung im Setup-Menü siehe DB-MODE Seite 11.
	9	Ausblenden des Zoomfensters
>> 1/3		Seitenwechsel zur Menüauswahl
		Speichermenü Seite 2 von 3
		Strukturelement hinzufügen
4	#	Bedeutung der Symbole von oben nach unten: Kunde, Gebäude, Verteiler, RCD, Stromkreis, Betriebsmittel, Maschine und Erder (die Einblendung der Symbole ist abhängig vom angewählten Strukturelement). Auswahl: Cursortasten OBEN/UNTEN und J
		Um dem ausgewählten Strukturelement eine Bezeichnung hinzuzufügen siehe auch Editiermenü folgende Spalte.
	EDIT	weitere Symbole siehe Editiermenu unten
K		Angewähltes Strukturelement löschen

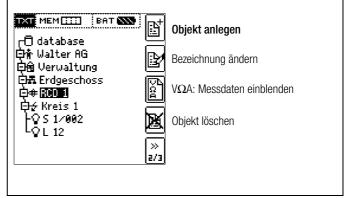
Symbole	Bedeutung
	Messdaten einblenden, sofern für dieses Struktur- element eine Messung durchgeführt wurde.
	Bearbeiten des angewählten Strukturelements
	Speichermenü Seite 3 von 3
	Nach Identnummer suchen
	> Vollständige Identnummer eingeben
AA TRT	Nach Text suchen > Vollständigen Text (ganzes Wort) eingeben
ALL ALL	Nach Identnummer oder Text suchen
₽	Weitersuchen
	Editiermenü
	Cursor LINKS:
+	Auswahl eines alphanumerischen Zeichens
→	Cursor RECHTS: Auswahl eines alphanumerischen Zeichens
4	ENTER: einzelne Zeichen übernehmen
$\overline{\checkmark}$	Eingabe bestätigen
←	Cursor nach links
\rightarrow	Cursor nach rechts
H- DEL	Zeichen löschen
A a	Umschaltung zwischen alphanumerischen Zeichen:
А	✓ABCDEFGHIJK ^{Großbuchstaben} LMNOPQRSTUVW XYZ⊔↔⇒
a	∨abcdefghijk ^{Kleinbuchstaben} lmnopqrstu∨w ×yz⊔∻⇒
0	<pre>~0123456789+ Ziffern -×/=:,;_()<> .!?⊔↔⇒</pre>
@	∨ƏäÄööüü߀\$% ^{Sonderzeichen} &#áàéèíìóòúù ñÑæ⊔∻⇒</th></tr></tbody></table>


Symbolik Verteilerstruktur / Baumstruktur

16.3.1 Strukturerstellung (Beispiel für den Stromkreis)

Nach Anwahl über die Taste **MEM** finden Sie auf drei Menüseiten (1/3, 2/3 und 3/3) alle Einstellmöglichkeiten zur Erstellung einer Baumstruktur. Die Baumstruktur besteht aus Strukturelementen, im Folgenden auch Objekte genannt.

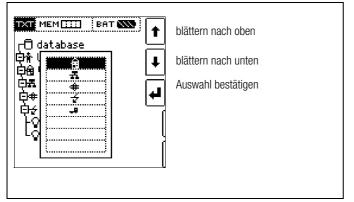
Position zum Hinzufügen eines neuen Objekts wählen



Benutzen Sie die Tasten ↑↓, um die gewünschten Strukturelemente anzuwählen.

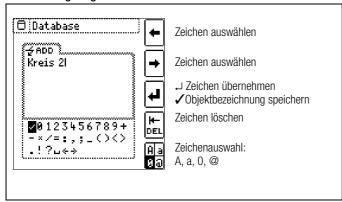
Mit J wechseln Sie in die Unterebene.

Mit >> blättern Sie zur nächsten Seite.


Neues Objekt anlegen

Drücken Sie die Taste

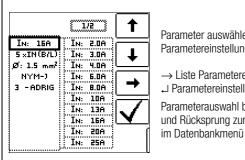
zur Erstellung eines neuen Objekts.


Neues Objekt aus Liste auswählen

Wählen Sie ein gewünschtes Objekt aus der Liste über die Tasten ↑↓ aus und bestätigen dies über die Taste ↓.

Je nach gewähltem Profil im SETUP des Prüfgeräts (siehe Kap. 4.6) kann die Anzahl der Objekttypen begrenzt sein oder die Hierarchie unterschiedlich aufgebaut sein.

Bezeichnung eingeben


Geben Sie eine Bezeichnung ein und quittieren diese anschlie-Bend durch Eingabe von ✓.

Hinweis

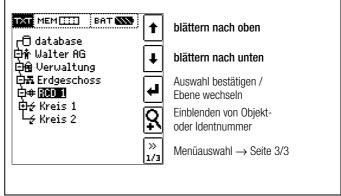
Bestätigen Sie die unten voreingestellten oder geänderten Parameter, ansonsten wird die neu angelegte Bezeichnung nicht übernommen und abgespeichert.

Parameter für Stromkreis einstellen

Parameter auswählen Parametereinstellung wählen

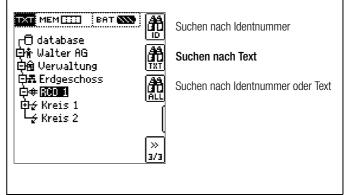
→ Liste Parametereinstellung → Parametereinstellung bestätigen Parameterauswahl bestätigen und Rücksprung zur Seite 1/3

Z. B. müssen hier für den ausgewählten Stromkreis die Nennstromstärken eingegeben werden. Die so übernommenen und abgespeicherten Messparameter werden später beim Wechsel von der Strukturdarstellung zur Messung automatisch in das aktuelle Messmenü übernommen.

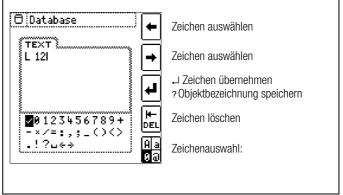


Hinweis

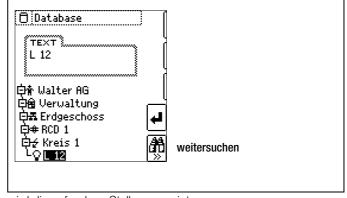
Über Strukturerstellung geänderte Stromkreisparameter bleiben auch für Einzelmessungen (Messungen ohne Speicherung) erhalten.


Ändern Sie im Prüfgerät die von der Struktur vorgegebenen Stromkreisparameter, so führt dies beim Abspeichern zu einem Warnhinweis, siehe Fehlermeldung Seite 81.

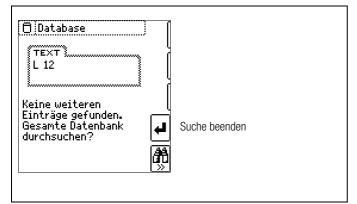
16.3.2 Suche von Strukturelementen



Die Suche beginnt unabhängig vom aktuell markierten Objekt immer bei database.


Wechseln Sie zur Seite 3/3 im Datenbankmenü

Nach Auswahl der Textsuche


und Eingabe des gesuchten Textes (nur genaue Übereinstimmung wird gefunden, keine Wildcards, case sensitive)

wird die gefundene Stelle angezeigt. Weitere Stellen werden durch Anwahl des nebenstehenden Icons gefunden.

68

Werden keine weiteren Einträge gefunden, so wird obige Meldung eingeblendet.

16.4 Datenspeicherung und Protokollierung

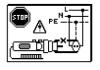
Messung vorbereiten und durchführen

Zu jedem Strukturelement können Messungen durchgeführt und gespeichert werden. Dazu gehen Sie in der angegebenen Reihenfolge vor:

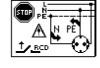
- Stellen Sie die gewünschte Messung am Drehrad ein.
- \Rightarrow Starten Sie mit der Taste **ON/START** oder **I** Δ_N die Messung. Am Ende der Messung wird der Softkey "→ Diskette" eingeblendet.
- Drücken Sie kurz die Taste "Wert Speichern".

Die Anzeige wechselt zum Speichermenü bzw. zur Strukturdarstellung.

- Navigieren Sie zum gewünschten Speicherort, d. h. zum gewünschte Strukturelement/Objekt, an dem die Messdaten abgelegt werden sollen.
- Sofern Sie einen Kommentar zur Messung eingeben wollen, drücken Sie die nebenstehende Taste und geben Sie eine Bezeichnung über das Menü "EDIT" ein wie im Kap. 16.3.1 beschrieben.



Schließen Sie die Datenspeicherung mit der Taste "STORE" ab.



Speichern von Fehlermeldungen (Pop-ups)

Wird eine Messung aufgrund einer Fehlers ohne Messwert beendet, so kann diese Messung zusammen mit dem Pop-up über die Taste "Wert Speichern" abgespeichert werden. Statt des Pop-up-Symbols wird der entsprechende Text in der ETC ausgegeben. Dies gilt nur für eine begrenzte Auswahl von Pop-ups, siehe unten. In der Datenbank des Prüfgeräts selbst ist weder Symbol noch Text abrufbar.

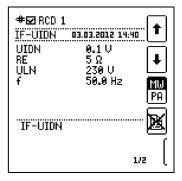
Alternatives Speichern

Durch langes Drücken der Taste "Wert Speichern" wird der Messwert an der zuletzt eingestellten Stelle im Strukturdiagramm abgespeichert, ohne dass die Anzeige zum Speichermenü wechselt.

Hinweis

Sofern Sie die Parameter in der Messansicht ändern. werden diese nicht für das Strukturelement übernommen. Die Messung mit den veränderten Parametern kann trotzdem unter dem Strukturelement gespeichert werden, wobei die geänderten Parameter zu jeder Messung mitprotokolliert werden.

Aufruf gespeicherter Messwerte


- Wechseln Sie zur Verteilerstruktur durch Drücken der Taste MEM und zum gewünschten Stromkreis über die Cursortas-
- Wechseln Sie auf die Seite 2 durch Drücken nebenstehender Taste:

Blenden Sie die Messdaten ein durch Drücken nebenstehender Taste:

Pro LCD-Darstellung wird jeweils eine Messung mit Datum und Uhrzeit sowie ggf. Ihrem Kommentar eingeblendet. Beispiel: RCD-Messung.

Hinweis

Taste löschen.

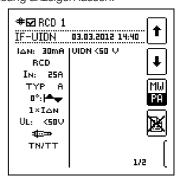
gung der Löschung auf.

Ein Haken in der Kopfzeile bedeutet, dass diese Messung bestanden ist.

Ein Kreuz bedeutet, dass diese Messung nicht bestanden wurde.

ist über die nebenstehenden Tasten möglich.

Sie können die Messung über die nebenstehende



Ein Abfragefenster fordert Sie zur Bestäti-

Über die nebenstehende Taste (MW: Messwert/PA: Parameter) können Sie sich die Einstellparameter zu dieser Messung anzeigen lassen.

Blättern zwischen den Parametern ist über die nebenstehenden Tasten möglich.

Datenauswertung und Protokollierung mit dem Programm ETC

Sämtliche Daten inklusive Verteilerstruktur können mit dem Programm ETC auf den PC übertragen und ausgewertet werden. Hier sind nachträglich zusätzliche Informationen zu den einzelnen Messungen eingebbar. Auf Tastendruck wird ein Protokoll über sämtliche Messungen innerhalb einer Verteilerstruktur erstellt oder die Daten in eine EXCEL-Tabelle exportiert.

Beim Drehen des Funktionsdrehschalters wird die Datenbank verlassen. Die zuvor in der Datenbank eingestellten Parameter werden nicht in die Messung übernommen.

16.4.1 Einsatz von Barcode- und RFID-Lesegeräten

Suche nach einem bereits erfassten Barcode

Der Ausgangspunkt (Schalterstellung und Menü) ist beliebig.

Scannen Sie den Barcode Ihres Objekts ab.

Der gefundene Barcode wird invers dargestellt.

All Mit ENTER wird dieser Wert übernommen.

Hinweis

Ein bereits selektiertes/ausgewähltes Objekt wird bei der Suche nicht berücksichtigt.

Allgemeines Weitersuchen

Unabhängig davon, ob ein Objekt gefunden wurde oder nicht, kann über diese Taste weitergesucht werden:

- -Objekt gefunden: weitersuchen unterhalb des zuvor gewählten Objekts
- kein weiteres Objekt gefunden: die gesamte Datenbank wird auf allen Ebenen durchsucht

Einlesen eines Barcodes zum bearbeiten

Sofern Sie sich im Menü zur alphanumerischen Eingabe befinden, wird ein über ein Barcode- oder RFID-Leser eingescannter Wert direkt übernommen.

Einsatz eines Barcodedruckers (Zubehör)

Ein Barcodedrucker ermöglicht folgende Anwendungen:

- Ausgabe von Identnummern für Objekte als Barcode verschlüsselt; zum schnellen und komfortablen Erfassen bei Wiederholungsprüfungen
- Ausgabe von ständig vorkommenden Bezeichnungen wie z. B. Prüfobiekttypen als Barcodes verschlüsselt in eine Liste. um diese bei Bedarf für Kommentare einlesen zu können.

17 Bedien- und Anzeigeelemente

Prüfgerät und Adapter

(1) Bedienterminal - Anzeigefeld

Auf der LCD werden angezeigt:

- ein oder zwei Messwerte als dreistellige Ziffernanzeige mit Einheit und Kurzbezeichnung der Messgröße
- Nennwerte für Spannung und Frequenz
- Anschlussschaltbilder
- Hilfetexte
- Meldungen und Hinweise.

Das Gelenk mit Stufenraster ermöglicht es Ihnen, das Anzeigeund Bedienteil nach vorne oder hinten zu schwenken. Der Ablesewinkel ist so optimal einstellbar.

(2) Befestigungsösen für Umhängegurt

Befestigen Sie den beiliegenden Umhängegurt an den Halterungen an der rechten und linken Seite des Gerätes. Sie können dann das Gerät umhängen und haben zum Messen beide Hände

(3) Funktionsdrehschalter

Mit diesem Drehschalter wählen Sie die Grundfunktionen: $SETUP / I_{AN} / I_F / Z_{L-PE} / Z_{L-N} / R_E / R_{LO} / R_{ISO} / U / SENSOR /$ EXTRA / AUTO

Ist das Gerät eingeschaltet und Sie drehen den Funktionsschalter, so werden immer die Grundfunktionen angewählt.

Messadapter

Achtung!

Der Messadapter (2-polig) darf nur mit dem Prüfstecker des Prüfgeräts verwendet werden.

Die Verwendung für andere Zwecke ist nicht zulässig!

Der aufsteckbare Messadapter (2-polig) mit zwei Prüfspitzen wird zum Messen in Anlagen ohne Schutzkontakt-Steckdosen, z. B. bei Festanschlüssen, in Verteilern, bei allen Drehstrom-Steckdosen, sowie zur Isolationswiderstands- und Niederohmmessung

Zur Drehfeldmessung ergänzen Sie den zweipoligen Messadapter mit der mitgelieferten Messleitung (Prüfspitze) zum dreipoligen Messadapter.

(5) Steckereinsatz (länderspezifisch)

Achtung!

Der Steckereinsatz darf nur mit dem Prüfstecker des Prüfgeräts verwendet werden.

Die Verwendung für andere Zwecke ist nicht zulässig!

Mit dem aufgesteckten Steckereinsatz können Sie das Gerät direkt an Schutzkontakt-Steckdosen anschließen. Sie brauchen nicht auf die Steckerpolung achten. Das Gerät prüft die Lage von Außenleiter L und Neutralleiter N und polt, wenn erforderlich, den Anschluss automatisch um.

Mit aufgestecktem Steckereinsatz auf den Prüfstecker überprüft das Gerät, bei allen auf den Schutzleiter bezogenen Messarten, automatisch, ob in der Schutzkontaktsteckdose beide Schutzkontakte miteinander und mit dem Schutzleiter der Anlage verbunden sind.

(6) Prüfstecker

Auf den Prüfstecker werden die länderspezifischen Steckereinsätze (z. B. Schutzkontakt-Steckereinsatz für Deutschland oder SEV-Steckereinsatz für die Schweiz) oder der Messadapter (2polig) aufgesteckt und mit einem Drehverschluss gesichert. Die Bedienelemente am Prüfstecker unterliegen einer Entstörfilterung. Hierdurch kann es zu einer leicht verzögerten Reaktion gegenüber einer Bedienung direkt am Gerät kommen.

(7) Krokodilclip (aufsteckbar)

(8) Prüfspitzen

Die Prüfspitzen sind der zweite (feste-) und dritte (aufsteckbare-) Pol des Messadapters. Ein Spiralkabel verbindet sie mit dem aufsteckbaren Teil des Messadapters.

(9) Taste ON/Start ▼

Mit dieser Taste am Prüfstecker oder Bedienterminal wird der Messablauf der im Menü gewählten Funktion

gestartet. Ausnahme: Ist das Gerät ausgeschaltet, so wird es durch Drücken nur der Taste am Bedienterminal eingeschaltet.

Die Taste hat die gleiche Funktion wie die Taste ▼ am Prüfstekker.

(10) Taste I_{∧N} / I (am Bedienterminal)

Mit dieser Taste am Prüfstecker oder Bedienterminal werden folgende Abläufe ausgelöst:

- bei der RCD-Prüfung (I_{AN}): nach der Messung der Berührungsspannung wird die Auslöseprüfung gestartet.
- Innerhalb der Funktion R_{L0} / Z_{L-N} wird die Messung von ROFFSET gestartet.
- Halbautomatischer Polwechsel (siehe Kap. 5.8)

(11) Kontaktflächen

Die Kontaktflächen sind an beiden Seiten des Prüfsteckers angebracht. Beim Anfassen des Prüfsteckers berühren Sie diese automatisch. Die Kontaktflächen sind von den Anschlüssen und von der Messschaltung galvanisch getrennt.

Das Gerät kann in Drehschalterstellung "U" als Phasenprüfer der Schutzklasse II verwendet werden!

Bei einer Potenzialdifferenz von > 25 V zwischen Schutzleiteranschluss PE und der Kontaktfläche wird PE eingeblendet (vgl. Kapitel 18 "Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen" ab Seite 73).

(12) Halterung für Prüfstecker

In der gummierten Halterung können Sie den Prüfstecker mit dem befestigten Steckereinsatz am Gerät sicher fixieren.

(13) Sicherungen

Die beiden Sicherungen schützen das Gerät bei Überlast. Außenleiteranschluss L und Neutralleiteranschluss N sind einzeln abgesichert. Ist eine Sicherung defekt und wird der mit dieser Sicherung geschützte Pfad beim Messen verwendet, dann wird eine entsprechende Meldung im Anzeigefeld angezeigt.

Achtung!

Falsche Sicherungen können das Messgerät schwer beschädigen.

Nur Originalsicherungen von GMC-I Messtechnik GmbH gewährleisten den erforderlichen Schutz durch geeignete Auslösecharakteristika, siehe Kapitel 20.3.

Hinweis

Die Spannungsmessbereiche sind auch nach dem Ausfall der Sicherungen weiter in Funktion.

(14) Klemmen für Prüfspitzen (8)

(15/16) Stromzangenanschluss

An diese Buchsen darf ausschließlich die Zangenstromwandler angeschlossen werden, die als Zubehör angeboten werden.

(17) Sondenanschlussbuchse

Die Sondenanschlussbuchse wird für die Messung der Sondenspannung U_{S-PE} , der Erderspannung U_{E} , des Erdungswiderstandes R_E und des Standortisolationswiderstandes benötigt. Bei der Prüfung von RCD-Schutzeinrichtungen zum Messen der Berührungsspannung kann sie verwendet werden. Der Anschluss

der Sonde erfolgt über einen berührungsgeschützten Stecker mit 4 mm Durchmesser.

Das Gerät prüft, ob eine Sonde ordnungsgemäß gesetzt ist, und zeigt den Zustand im Anzeigefeld an.

(18) USB-Schnittstelle

Der USB-Anschluss ermöglicht den Datenaustausch zwischen Prüfgerät und PC.

(19) RS232-Schnittstelle

Dieser Anschluss ermöglicht die Dateneingabe über Barcodeoder RFID-Lesegerät.

(20) Ladebuchse

An diese Buchse darf ausschließlich das Ladegerät **Z502R** zum Laden von Akkus im Prüfgerät angeschlossen werden.

(21) Akkufachdeckel - Ersatzsicherungen

Achtung!

Bei abgenommenem Akkufachdeckel muss das Prüfgerät allpolig vom Messkreis getrennt sein!

Der Akkufachdeckel deckt den Kompakt Akku-Pack (Z502H) oder einen Akkuhalter mit den Akkus und die Ersatzsicherungen ah

Der Akkuhalter bzw. Akkupack Z502H dient zur Aufnahme von acht 1,5 V Mignonzellen nach IEC LR 6 für die Stromversorgung des Gerätes. Achten Sie beim Einsetzen der Akkus auf die richtige Polung entsprechend der angegebenen Symbole.

Achtung!

Achten Sie unbedingt auf das polrichtige Einsetzen aller Akkus. Ist bereits eine Zelle mit falscher Polarität eingesetzt, wird dies vom Prüfgerät nicht erkannt und führt möglicherweise zum Auslaufen der Akkus.

Zwei Ersatzsicherungen befinden sich unter dem Akkufachdeckel.

Bedienterminal - LEDs

LED MAINS/NETZ

Sie ist nur in Funktion, wenn das Gerät eingeschaltet ist. Sie hat keine Funktion in den Spannungsbereichen U_{L-N} und U_{L-PE} . Sie leuchtet grün, rot oder orange, blinkt grün oder rot, je nach Anschluss des Gerätes und der Funktion (vgl. Kapitel 18 "Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen" ab Seite 73).

Die LED leuchtet auch, sofern bei der Messung von $\rm R_{\rm ISO}$ und $\rm R_{\rm LO}$ Netzspannung anliegt.

LED UL/RL

Sie leuchtet rot, wenn bei einer Prüfung der RCD-Schutzeinrichtung die Berührungsspannung > 25 V bzw. > 50 V ist sowie nach einer Sicherheitsabschaltung. Bei Grenzwertunter- bzw. -überschreitungen von $R_{\rm ISO}$ und $R_{\rm LO}$ leuchtet die LED ebenfalls.

LED RCD • FI

Sie leuchtet rot, wenn bei der Auslöseprüfung mit Nennfehlerstrom der RCD-Schutzschalter nicht innerhalb von 400 ms (1000 ms bei selektiven RCD-Schutzschaltern vom Typ RCD S) auslöst. Sie leuchtet ebenfalls, wenn bei einer Messung mit ansteigendem Fehlerstrom der RCD-Schutzschalter nicht vor Erreichen des Nennfehlerstromes auslöst.

18 Signalisierung der LEDs, Netzanschlüsse und Potenzialdifferenzen

	Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung			
LED-Sigr	nalisierun	gen						
NETZ/ MAINS	leuchtet grün	×		$I_{\Delta N} / I_{F \Delta}$ $Z_{L-N} / Z_{L-PE} / R_{E}$ $\Delta U, Z_{ST}, kWh, IMD,$ int. Rampe, RCM	Korrekter Anschluss, Messung freigegeben			
NETZ/ MAINS	blinkt grün		X	$I_{\Delta N} / I_{F} $ $Z_{L-N} / Z_{L-PE} / R_{E}$ $\Delta U, Z_{ST}, kWh, IMD, int. Rampe, RCM$	N-Leiter nicht angeschlossen, Messung freigegeben			
NETZ/ MAINS	leuchtet orange		X	I _{ΔN} / I _F ⊿ Z _{L-N} / Z _{L-PE} / R _E	Netzspannung 65 V bis 253 V gegen PE, 2 verschiedene Phasen liegen an (Netz ohne N-Leiter), Messung freigegeben			
NETZ/ MAINS	blinkt rot	X	X	$I_{\Delta N} / I_{F} \Delta$ $Z_{L-N} / Z_{L-PE} / R_{E}$ $\Delta U, Z_{ST}, kWh, IMD,$ int. Rampe, RCM	1) keine Netzspannung oder 2) PE unterbrochen			
NETZ/ MAINS	leuchtet rot		Х	R _{ISO} / R _{LO}	Fremdspannung liegt an, Messung gesperrt			
NETZ/ MAINS	blinkt gelb		Х	I _{∆N} / I _F ⊿ Z _{L-N} / Z _{L-PE} / R _E	L und N sind mit den Außenleitern verbunden.			
U_L/R_L	leuchtet rot	X	X	I _{An R_{ISO} / R_{LO}}	– Berührungsspannung $U_{I\Delta N}$ bzw. $U_{I\Delta} > 25$ V bzw. > 50 V – eine Sicherheitsabschaltung ist erfolgt – Grenzwertunter- bzwüberschreitung bei R_{ISO} / R_{IO}			
RCD/FI	leuchtet rot	X	Х	I _{ΔN} / I _F ⊿ int. Rampe	der RCD-Schutzschalter hat bei der Auslöseprüfung nicht oder nicht rechtzeitig ausgelöst			
Notzono	hluooko	atrollo	Finnhaga	novetom ICD Anack	aluganikta aramma			
ING (Zalist	JiliuSSKUI	ili one —	EIIIPIIASE	iisysteiii — Lod-Alisci	nusspiktogrannie			
? ?	wird ein- geblendet			alle außer U	keine Anschlusserkennung			
PE O O L N	wird ein- geblendet			alle außer U	Anschluss OK			
PE O L N	wird ein- geblendet			alle außer U	L und N vertauscht, Neutralleiter führt Phase			
PE	wird ein-			alle außer U und RE	keine Netzverbindung			
000	geblendet			RE	Standardanzeige ohne Anschlussmeldungen			
PE O X L N	wird ein- geblendet			alle außer U	Neutralleiter unterbrochen			
PE X L N	wird ein- geblendet			alle außer U	Schutzleiter PE unterbrochen, Neutralleiter N und/oder Außenleiter L führen Phase			
PE X • L N	wird ein- geblendet			alle außer U	Außenleiter L unterbrochen, Neutralleiter N führt Phase			
PE O L N	wird ein- geblendet			alle außer U	Außenleiter L und Schutzleiter PE vertauscht			
L N								
PE O X L N	wird ein- geblendet			alle außer U	Außenleiter L und Schutzleiter PE vertauscht Neutralleiter unterbrochen (nur mit Sonde)			

	Zustand	stecker		Stellung des Funktionsschalters	Funktion / Bedeutung
Netzanso	hlusskor	ntrolle —	Dreiphase	ensystem — LCD-Ansc	hlusspiktogramme
(L2)	wird ein- geblendet			U (Dreiphasenmessung)	Rechtsdrehfeld
(L2)	wird ein- geblendet			U (Dreiphasenmessung)	Linksdrehfeld
L1 L3	wird ein- geblendet			U (Dreiphasenmessung)	Schluss zwischen L1 und L2
L1 L3	wird ein- geblendet			U (Dreiphasenmessung)	Schluss zwischen L1 und L3
L1 L3	wird ein- geblendet			U (Dreiphasenmessung)	Schluss zwischen L2 und L3
L2 • • • • • • • • • • • • • • • • • • •	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L1 fehlt
	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L2 fehlt
L2 • 0 L1 ?	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L3 fehlt
E1 N	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L1 auf N
N 0 L1 L3	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L2 auf N
L2 • 0 L1 N	wird ein- geblendet			U (Dreiphasenmessung)	Leiter L3 auf N
Anechlus	ekontroll	le — Frdu	naswider	etandemessung hatter	iebetrieben "Akkubetrieb"
	SKUIILIUII	ie — Liuu	iiyswiuci	Standoniessung batter	ichenienen "Akkanenien
0 0 1 N	wird ein- geblendet			RE	Standardanzeige ohne Anschlussmeldungen
UEXT	wird ein- geblendet		PRO-RE	RE	Fremdspannung an Sonde S > 3 V Eingeschränkte Messgenauigkeit
IEXT	wird ein- geblendet		Mess- zange	RE	Verhältnis Stör-/Messstrom > 50 bei RE(sel), 1000 bei RE(2Z) Eingeschränkte Messgenauigkeit bei RE(sel): Störstrom > 0,85 A oder Verhältnis Störstrom/Messstrom > 100
RE(H) >>	wird ein- geblendet		PRO-RE	RE	Sonde H nicht angeschlossen oder RE.H > 150 kΩ ⇒ keine Messung, Anzeige RE – – RE.H > 50 kΩ oder RE.H / RE > 10000 ⇒ Messwert wird angezeigt, eingeschränkte Messgenauigkeit
RE(S)	wird ein- geblendet		PRO-RE	RE	Sonde S nicht angeschlossen oder RE.S > 150 kΩ oder RE.S × RE.H > 25 MΩ² ⇒ keine Messung, Anzeige RE – – RE.S > 50 kΩ oder RE.S / RE > 300 ⇒ Messwert wird angezeigt, eingeschränkte Messgenauigkeit
RE(E) >>	wird ein- geblendet		PRO-RE	RE	Sonde E nicht angeschlossen oder RE.E > 150 kΩ, RE.E/RE > 2000 ⇒ keine Messung, Anzeige RE – – RE.E/RE > 300 ⇒ Messwert wird angezeigt, eingeschränkte Messgenauigkeit

	Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
Akkutest					
	wird ein- geblendet			alle	Akkus müssen aufgeladen oder gegen Ende der Brauchbarkeitsdauer ersetzt werden (U < 8 V).
PE-Prüfu	ng durch	Fingerko	ntakt an o	den Kontaktflächen des	s Prüfsteckers
LCD	LEDs			I	
PE wird einge- blendet	U _L /R _L RCD/FI leuchten rot	X	X	U (Einphasenmessung)	Potenzialdifferenz \geq 50 V zwischen Fingerkontakt und PE (Schutzkontakt) Frequenz f \geq 50 Hz
PE wird einge- blendet	U _L /R _L RCD/FI leuchten rot	X	X	U (Einphasenmessung)	falls L korrekt kontaktiert und PE unterbrochen ist (Frequenz f ≥ 50 Hz)
Fehlerme	eldungen	— LCD-P	iktogram	me	
UPE>	OL! PE \$\frac{1}{2}	X	X	Alle Messungen mit Schutzleiter	Potenzialdifferenz ≥ U _L zwischen Fingerkontakt und PE (Schutzkontakt) (Frequenz f ≥ 50 Hz) Abhilfe: PE-Anschluss überprüfen Hinweis: Nur bei Einblendung : Messung kann durch erneutes Drücken der Taste Start trotzdem gestartet werden.
STOP	U>Unax	X	X	I _{∆N} / I _F ⊿ Z _{L-N} / Z _{L-PE} / R _E	1) Spannung bei RCD-Prüfung mit Gleichstrom zu hoch (U > 253 V) 2) U generell U > 550 V mit 500 mA 3) U > 440 V bei I _{ΔN} / I _F ✓ 4) U > 253 V bei I _{ΔN} / I _F ✓ mit 500 mA 5) U > 253 V bei Messungen mit Sonde
A -	1 ∕_RCD 50% I _{∆N}	X	X	I _{ΔN}	RCD löst zu früh aus oder ist defekt Abhilfe: Schaltung auf Vorströme überprüfen
	t_eco DC+P◆	Х	X	Z _{L-PE}	RCD löst zu früh aus oder ist defekt. Abhilfe: mit "DC + positiver Halbwelle" prüfen
IRC	<u>†</u> _RCD	X	X	I _{ΔN} / I _F ⊿	RCD hat während der Berührungsspannungsmessung ausgelöst. Abhilfe: eingestellten Nennprüfstrom prüfen
<u> </u>	PRCD			EXTRA → PRCD	Der PRCD hat ausgelöst. Grund: Schlechte Kontaktierung oder defekter PRCD
STOP -	×	X	X	alle außer U	Von außen zugängliche Sicherung ist defekt Die Spannungsmessbereiche sind auch nach dem Ausfall der Sicherungen weiter in Funktion. Spezialfall R _{LO} : Fremdspannung während der Messung kann zur Zerstörung der Sicherung führen. Abhilfe: Sicherung tauschen, siehe Ersatzsicherung im Akkufach. Beachten Sie die Hinweise zum Tauschen der Sicherung im Kap. 20.3!
' ' ' '	25 Hz 15 Hz	X	X	I _{ΔN} / I _F ⊿ Z _{L-N} / Z _{L-PE} / R _E	Frequenz außerhalb des zulässigen Bereichs Abhilfe: Netzanschluss überprüfen

Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
			alle	Temperatur im Prüfgerät zu hoch Abhilfe: Warten bis sich das Prüfgerät abgekühlt hat
	X	X	R _{ISO} / R _{LO}	Fremdspannung vorhanden Abhilfe: das Messobjekt muss spannungsfrei geschaltet werden
U _{EXT}	+	PRO-RE	RE (bat)	Fremdspannung > 20 V an den Sonden: H gegen E oder S gegen E keine Messung möglich
P1/ES??	X	PRO-RE	RE (bat)	Sonde ES nicht oder falsch angeschlossen.
		PRO-RE/ 2	RE (bat)	Generator-Stromzange (E-Clip-2) nicht angeschlossen
STOP UEXT	X X al		alle Messungen mit Sonde	Fremdspannung an der Sonde
STOP A UINT	X	X	R _{ISO} / R _{LO}	Überspannung bzw. Überlastung des Messspannungsgenerators bei der Messung von $\rm R_{\rm ISO}$ bzw. $\rm R_{\rm LO}$
≜ Un: 0V?	X	X	$I_{\Delta N} / I_{\mathbf{F} \Delta}$ Z_{L-N} / Z_{L-PE} Z_{ST}, R_{ST}, R_{E} Zähleranlauf	kein Netzanschluss Abhilfe: Netzanschluss überprüfen
∑ Service	X	X	alle	Hardwaredefekt Abhilfe: 1) Ein-/Ausschalten oder 2) Akkus kurzzeitig entnehmen Wenn Fehlermeldung weiterhin angezeigt wird, Prüfgerät an die GMC-I Service GmbH senden.
Δ RL0+ >10%	X	X	R _{LO}	OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen OFFSET-Messung von R LO+ und R LO– weiterhin möglich
ROFFSET > 10Ω		X	R _{LO}	R _{OFFSET} > 10 Ω: OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen
Ζ>10Ω		X	EXTRA → ΔU	Z > 10 Ω: OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen
ΔU0FFSET ≥ ΔU		X	EXTRA → ΔU	ΔU _{OFFSET} > ΔU: Offsetwert größer als Messwert an der Verbraucheranlage OFFSET-Messung nicht sinnvoll Abhilfe: Anlage überprüfen
⊕ []? ★ 600	X	X	R _{ISO} / R _{LO} / R _{E(bat)}	Kontaktproblem oder Sicherung defekt Abhilfe: Prüfstecker oder Messadapter auf richtigen Sitz im Prüfstecker überprüfen oder Sicherung tauschen
		X	R _E	Der 2-Pol-Adapter muss umgepolt werden.

Zustand	Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Beder	utung								
PE N PE	X		I _{ΔN} / I _F Δ	N und PE sind v	ertauscht								
	A FENT X X		^I ΔN / I F⊿ Z _{L-N} / Z _{L-PE} / R _E	Abhilfe: Netz oder 2) Anzeige im A in Bezug auf bügel unterb Ursache: Spa Folge: die M	Abhilfe: Netzanschluss überprüfen oder								
A PENL	X X		I _{∆N} / I _F ⊿	Anzeige im Anso in Bezug auf die bügel unterbrood Ursache: Strom -l Folge: keine Mes	chlusspiktog Tasten des hen Messpfad ur	gramm: Prüfsteckenterbrocher	ers oben lieç		nutzleiter-				
PROBE (R _E I∆N / IF⊿		Sonde wird nicht erkannt, Sonde nicht angeschlossen Abhilfe: Sondenanschluss überprüfen								
##WA?##################################			R _E	Zange wird nich – Zange nicht ar – Strom durch d – Wandlerüberse Abhilfe: Zangena Batterier	ngeschlosse lie Zange zu etzung falsc	ı klein (Teile ch eingeste berprüfen,	llt Wandlerüb	ersetzung	prüfen				
▲ 3€9 188m∨/A			R _E	Sofern Sie die W erscheint der Hi									
STOP UEXT			R _E	Spannung am Z Am Prüfgerät ein weise nicht mit d Abhilfe: Wandler	gestellter Pa er Wanlderü	rameter Wa bersetzung	ınlderüberse am Zangen	tzung stimr					
			alle	Die Akkuspannu Es sind keine zu Das Speichern of Abhilfe: Akkus m dauer ersetzt we Widerstand im N	verlässigen der Messwe nüssen aufg erden.	Messunge erte wird blo geladen ode	n mehr mög ockiert.	_	auchbarkeits-				
				vviderstand im N	N-PE-Plad 2	u groß							
STOP A					10 mA	30 mA	I _{ΔN} /I _F	300 mA	500 mA				
			$I_{\Delta N} / I_{F}$	R _{MAX} bei I _{∆N}	510 Ω	170 Ω	50 Ω	15 Ω	9 Ω				
Rн-ре > Rмях				$ m R_{MAX}$ bei $ m I_F$ 410 $ m \Omega$ 140 $ m \Omega$ 40 $ m \Omega$ 12 $ m \Omega$ 7 $ m \Omega$ Auswirkung: Der erforderliche Prüfstrom kann nicht generiert werd die Messung wird abgebrochen.									
UPE > UL!			Z _{L-PE} , R _E	Bei Überschreitu Z_{L-PE} und R_E : Au nur R_E alternativ Aufforderung zu	ufforderung :	zum Umso	chalten auf d	die 15 mA-					

Zustand Prüf- stecker		Stellung des Funktionsschalters	Funktion / Bedeutung
Eingabeplausibilitätsprüfur	ng — Kon	trolle der Parameterko	mbinationen — LCD-Piktogramme
Parameter out of Range			Parameter out of range
1. IAN: 500mA + 2. 5×IAN		I _{∆N} / I _F ∠	5 x 500 mA nicht moeglich
TYP B/B+ TYP EU G/F (U/Sf) SRCD FRCD-S PRCD-K		I _{ΔN} / I _F ⊿	Typ B, B+ und EV/MI nicht bei G/R, SRCD, PRCD
1. 180°:		I _{AN}	180 Grad nicht bei G/R, SRCD, PRCD
1. MEG: 1		I _{ΔN} / I _F ⊿	DC nicht bei G/R, SRCD, PRCD
LITYP BACK TYP BACK NEG: AT 2. NEG: T. T. POS: J. T.		I _{ΔN} / I _F ⊿	Halbwelle oder DC nicht bei Typ AC, F, B+ und EV/MI
1. TYP A TYP F 2. NEG: 1		$I_{\Delta N} / I_{F \Delta}$ EXTRA \rightarrow RCM	DC nicht bei Typ A, F
1. A+R ION + 2. NEG: L POS: J.		I _{ΔN}	1/2 Prüfstrom nicht mit DC
L Z×IAN + S×IAN + S×IAN - FOS: A 2. NEG: A POS: A POS: A		I _{AN}	2x / 5x IdN nur mit Vollwelle
1. IT + 2. 2-F = 35		R _E	im IT-Netz nicht ohne Sonde!
™ins~: X ●		R _E	Messart batteriebetrieben "Akkubetrieb" nicht möglich, z. B. bei Anschluss des 4-Pol-Adapters am Prüfstecker oder bei 2-Zangen-Messung oder bei Messung des spezifischen Erdungswiderstands
mains∼: ✓ ●		R _E	Messart netzbetrieben nicht möglich, z.B. bei Anschluss des 2-/3-Pol-Adapters am Prüfstecker
1. DC + AUTO 1. BEZ (9mA) 2. BEZ (9mA) 1. BEZ (90 A) 1. BEZ (90 A)		I _{ΔN} / I _F ⊿	DC+ nur bei 10 Ohm
1. IT + 2. DC + P->		R _E	keine DC-Vormagnetisierung im IT Netz

Prüf- stecker	Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
		R _E	15 mA nur im 1 k Ω - und 100 Ω -Bereich möglich!
		R _E	15 mA nur als Schleifenmessung mit oder ohne Sonde
		EXTRA → RCM	Bei RCM: TYP AC, F, B+ und EV/MI nicht möglich
		I _{∆N} / I _F ⊿	im IT-Netz keine Messung mit Halbwelle oder DC möglich
		alle	Die von Ihnen gewählten Parameter sind in Kombination mit anderen bereits eingestellten Parametern nicht sinnvoll. Die gewählten Parameter werden nicht übernommen. Abhilfe: Geben Sie andere Parameter ein.
		R _E	2-Pol-Messung über Schukostecker (nicht im IT-Netz möglich)
		EXTRA \rightarrow ta+l Δ	Die intelligente Rampe ist nicht mit den RCD-Typen RCD-S und G/R mögich.
			steckeradapterFunktionsschalters R_E R_E R_E EXTRA \rightarrow RCM $I_{\Delta N} / I_F $ alle R_E R_E

Zustand		Mess- adapter	Stellung des Funktionsschalters	Funktion / Bedeutung
Meldungen — LC	D-Piktogra	amme —	Prüfsequenzen	
Sequenz			AUTO	Die Prüfsequenz enthält eine Messung, die von dem angeschlossenen Prüfgerät nicht verarbeitet werden kann. Der entsprechende Prüfschritt muss übersprungen werden. Beispiel: Die Prüfsequenz enthält eine RCM-Messung, die an den PROFITEST MTECH übertragen wurde.
Sequenz beendet			AUTO	Die Prüfsequenz wurde erfolgreich durchlaufen.
⚠ NO DATA			AUTO	Es sind keine Prüfsequenzen hinterlegt. Ursache: Diese können durch folgende Aktionen gelöscht worden sein: Änderung der Sprache, des Profils, des DB-Modes oder durch Rücksetzen auf Werkseinstellungen.
Fehlermeldungen	— LCD-Pi	iktogram	me — Ableitstromme	ssadapter PRO-AB
			$EXTRA \to I_L$	Messbereich überschritten. Wechseln Sie in den größeren Messbereich (Prüfgerät und Ableitstrommessadapter).
	'		EXTRA \rightarrow I_L	Testmessung: Die Prüfung wurde bestanden. Der Ableitstrommessadapter ist jetzt einsatzbereit.
X			EXTRA → I _L	Testmessung: Die Prüfung wurde nicht bestanden. Der Ableitstrommessadapter ist defekt. Wenden Sie sich an unseren Reparaturservice.
			EXTRA → I _L	Testmessung: Überprüfen Sie die Sicherung im Ableitstrommessadapter.

stecker a	Mess- Stellung des adapter Funktionsschalters rationen — LCD-Piktogramme	Funktion / Bedeutung
Die Messparameter unterscheiden sich von den Objektdaten Soll die Datenbank angepasst werden?	$\begin{array}{c} _{\Delta N} / _{\text{F}} \angle \\ Z_{\text{L-N}} / Z_{\text{L-PE}} \\ \\ \text{EXTRA} \rightarrow t_{\text{A}} + _{\Delta} \\ \\ \text{EXTRA} \rightarrow \text{RCM} \end{array}$	Messwertspeicherung mit abweichendem Stromkreisparameter Der von Ihnen am Prüfgerät eingestellte Stromkreisparameter stimmt nicht mit dem in der Struktur unter Objektdaten hinterlegten Parameter überein. Beispiel: Der Auslösefehlerstrom ist in der Datenbank mit 10 mA vorgegeben, Sie haben aber mit 100 mA gemessen. Wollen Sie alle zukünftigen Messungen mit 100 mA durchführen, muss der Wert in der Datenbank durch Bestätigung mit angepasst werden. Der Messwert wird protokolliert und der neue Parameter übernommen. Wollen Sie den Parameter in der Datenbank unverändert lassen, so drükken Sie die Taste . Messwert und geänderter Parameter werden nur protokolliert.
TXT = ? Abc123!	alle	Bitte geben Sie eine Bezeichnung (alphanumerisch) ein
8% !	alle	Betrieb mit Barcodescanner Fehlermeldung bei Aufruf des Eingabefeldes "EDIT" und bei Akkuspannung < 8 V. Die Ausgangsspannung für den Betrieb des Barcodelesers wird bei U < 8 V generell abgeschaltet, damit die Restkapazität der Akkusausreicht, um Bezeichnungen zu Prüflingen eingeben und die Messung speichern zu können. Abhilfe: Akkus müssen aufgeladen oder gegen Ende der Brauchbarkeitsdauer ersetzt werden.
I(RSERE) SIMAX	alle	Betrieb mit Barcodescanner Es fließt ein zu hoher Strom über die RS232-Schnittstelle. Abhilfe: Das angeschlossene Gerät ist für diese Schnittstelle nicht geeignet.
CODE ?	alle	Betrieb mit Barcodescanner Barcode nicht erkannt, falsche Syntax
Database	alle	Daten könnnen an dieser Stelle der Struktur nicht eingegeben werden Abhilfe: Profil für vorausgewählte PC-Software beachten, siehe Menü SETUP.
Database Mul	alle	Messwertspeicherung ist an dieser Stelle der Struktur nicht möglich. Abhilfe: Prüfen Sie, ob Sie das zu Ihrem PC-Auswerteprogramm passende Profil im SETUP eingestellt haben, siehe Kap. 4.6.
MEM 100 % !	alle	Der Datenspeicher ist voll. Abhilfe: Sichern Sie die Messdaten auf einem PC und löschen Sie anschließend den Datenspeicher des Prüfgeräts durch Löschen von "database" oder durch Importieren einer (leeren) Datenbank.
Detete?	alle	Messung oder Datenbank (database) löschen. Dieses Abfragefenster fordert Sie zur nochmaligen Bestätigung der Löschung auf.
ESC database A		Datenverlust bei Änderung der Sprache, des Profils oder bei Rücksetzen auf Werkseinstellung!
Delete Delete All data?	SETUP	Sichern Sie vor Drücken der jeweiligen Taste Ihre Messdaten auf einem PC. Dieses Abfragefenster fordert Sie zur nochmaligen Bestätigung der Löschung auf.
## File > MEM ## MEM [[]] ☐ database	alle	Ist die Datenbank, d. h. die in der ETC angelegte Struktur zu groß für den Gerätespeicher, so erscheint diese Fehlermeldung. Die Datenbank im Gerätespeicher ist nach der abgebrochenen Datenbankübertragung leer. Abhilfe: Verkleinern Sie die Datenbank innerhalb der ETC oder senden Sie die Datenbank ohne Messwerte (Taste Struktur senden), falls bereits Messwerte vorhanden sein sollten.

19 Technische Kennwerte

Technische Kennwerte MBASE+ und MTECH+

				F:							Ans	schlüss	e		
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	Eingangs- impedanz/ Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz 1)	2-Pol- Adapter	3-Pol-			Zangei Z3512 A	n MFLEX P300
	U _{L-PE}	0 99,9 V	0,1 V		0,3 600 V ¹⁾		±(2% v.M.+5D)	±(1% v.M.+5D)							1
	U _{N-PE}	100 600 V	1 V		0,0 000 V		±(2% v.M.+1D)	±(1% v.M.+1D)							
	f	15,0 99,9 Hz	0,1 Hz		DC 15,4 420 Hz	U _N = 120/230/	±(0,2% v.M.+1D)	±(0,1% v.M.+1D)							
		100 999 Hz 0 99,9 V	1 Hz 0,1 V			400/500 V	±(3% v.M.+5D)	±(2% v.M.+5D)							
U	U _{3~}	100 600 V	1 V	5 ΜΩ	0,3 600 V		±(3% v.M.+1D)	±(2% v.M.+1D)							
	ļ	0 99,9 V	0,1 V		4.0 000.1/	$f_N = 16^2/_3/50/$ 60/200/400 Hz	±(2% v.M.+5D)	±(1% v.M.+5D)							
	U _{SONDE}	100 600 V	1 V		1,0 600 V	00/200/400 112	±(2% v.M.+1D)	±(1% v.M.+1D)							
	U _{L-N}	0 99,9 V	0,1 V		1,0 600 V ¹⁾		±(3% v.M.+5D)	±(2% v.M.+5D)							
	OL-N	100 600 V	1 V		1,0 000 V		±(3% v.M.+1D)	±(2% v.M.+1D)							
	U _{IAN}	0 70,0 V	0,1 V	0,3 · I _{ΔN}	5 70 V		+10% v.M.+1D	+1% v.M1D							
		10 Ω 999 Ω	1 Ω			-		+9% v.M.+1D	-						
		1,00 kΩ 6,51 kΩ	0,01 kΩ	$I_{\Delta N} = 10 \text{ mA} \cdot 1,05$											
		3 Ω 999 Ω	1Ω	1 00 1 1 05	-	$U_N =$									
		1 kΩ 2,17 kΩ 0,01 kΩ $ _{\Delta N} = 30 \text{ mA} \cdot 1$		HECHEHWEIL	120 V										
	R _E	1Ω 651 Ω	1Ω	I _{ΔN} =100 mA · 1,05	aus	230 V 400 V ²⁾									
		0,3 Ω 99,9 Ω	0,1 Ω	I _{AN} =300 mA · 1,05	$R_E = U_{I\Delta N} / I_{\Delta N}$	400 V									
		100 Ω 217 Ω	1Ω	. <u>A</u> N 000 1111 1,00		f _N = 50/60 Hz									
$I_{\Delta N}$		0,2 Ω 9,9 Ω	0,1 Ω 1 Ω	I _{ΔN} =500 mA · 1,05											
2314	$I_F (I_{\Delta N} = 6 \text{ mA})$	10 Ω 130 Ω 1,8 7,8 mA	1 52	1,8 7,8 mA	1,8 7,8 mA	$U_L = 25/50 \text{ V}$						wahl-			
I _F	$I_F (I_{\Delta N} = 0.007)$	3,0 13,0 mA	0,1 mA	3,0 13,0 mA	3,0 13,0 mA	I _{AN} =						weise			
'-	$I_F (I_{\Delta N} = 30 \text{ mA})$	9,0 39,0 mA	0,1	9,0 39,0 mA	9,0 39,0 mA	- ΔN — 6 mA						110100			
	$I_F (I_{\Delta N} = 100 \text{ mA})$	30 130 mA	1 mA	30 130 mA	30 130 mA	10 mA	±(5% v.M.+1D)	±(3,5% v.M.+2D)							
	$I_{\rm F} (I_{\rm AN} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	30 mA									
	$I_F (I_{\Delta N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA	100 mA									
	$U_{l\Delta}/U_{L}=25 \text{ V}$	0 25,0 V	0,1 V	wio I	0 25,0 V	300 mA 500 mA ²⁾	+10% v.M.+1D	+1% v.M1D							
	$U_{l\Delta}/U_{L} = 50 \text{ V}$	0 50,0 V	U, I V	wie I $_{\Delta}$	0 50,0 V	300 IIIA ·	+10% V.IVI.+1D	+9% v.M.+1 D							
	t _A (l _{∆N} · 1)	0 1000 ms	1 ms	6 500 mA	0 1000 ms										
	t _A (l _{∆N} · 2)	0 1000 ms	1 ms	2 · 6 2 · 500 mA	0 1000 ms		±4 ms	±3 ms							
	t _A (l _{∆N} · 5)	0 40 ms	1 ms	5 · 6 5 · 300 mA											
	Z _{L-PE} (▲)	0 999 mΩ			0,15 0,49 Ω	U _N = 120/230 V 400/500 V ¹⁾	±(10% v.M.+30D) ±(10% v.M.+30D)								
	Z _{L-N}	1,00 9,99 Ω	1 mΩ		0,50 0,99 Ω 1,00 9,99 Ω		±(5% v.M.+3D)	+(3% v.W.+3D)							
	_	0 999 mΩ	0,01 Ω												
	Z _{L-PE} + DC	1,00 9,99 Ω 10,0 29,9 Ω	0,1 Ω	1,3 3,7 A AC 0,5/1,25 A DC	0,25 0,99 Ω 1,00 9,99 Ω		±(18% v.M.+30D) ±(10% v.M.+3D)								
Z_{L-PE}	I _K (Z _{L-PE} ←,	0 9,9 A	0,1 A		120 (108 132) V										
		10 999 A 1,00 9,99 kA	1 A 10 A		230 (196 253) V 400 (340 440) V		Rechenwer	t aus Z _{L-PE}							
Z _{I-N}	Z _{L-PE} + DC)	10,0 50,0 kA	100 A		500 (450 550) V					Z _{L-PE}					
- "		0,5 9,99 Ω	0,01 Ω			nur Anzeigebereich									
	Z _{L-PE} (15 mA)	10,0 99,9 Ω	0,1 Ω		10 100 Ω		±(10% v.M.+10D)	±(2% v.M.+2D)							
		100 999 Ω	1 Ω		100 1000 Ω	U _N = 120/230 V		±(1% v.M.+1D)							
		100 999 mA	1 mA	15 mA AC	Rechenwert abh.	$f_N = 16^2 / 3^8 / 50 /$	Rechenwert aus	37, pc (15 mA):							
	I _K (15 mA)	0,00 9,99 A 10,0 99,9 A	0,01 A 0,1 A		von U_N und Z_{L-PE} : $I_K = U_N/101000\Omega$	60 Hz	$I_K = U_N/Z_{L-}$								
				1,3 3,7 A AC			±(10% v.M.+30D)								
	R _F (mit Sonde)	0 999 mΩ	1 mΩ	1,3 3,7 A AC		100/000 1/	±(10% v.M.+30D)								
	,	1,00 9,99 Ω 10,0 99,9 Ω	0,01 Ω 0,1 Ω	1,3 3,7 A AC	1,0 Ω9,99 Ω	$U_N = 120/230 \text{ V}$ $U_N = 400 \text{ V}^{-1}$	±(5% v.M.+3D)								
	[R _E (ohne Sonde)	100 999 Ω	1Ω	400 mA AC	10 Ω99,9 Ω	$f_N = 50/60 \text{ Hz}$	±(10% v.M.+3D)								
RE	Werte wie Z _{L-PE}]	1 kΩ 9,99 kΩ	0,01 kΩ	40 mA AC 4 mA AC	100 Ω999 Ω 1 kΩ9,99 kΩ	IN CO.CO.	±(10% v.M.+3D)								
-		0 999 mΩ	1 mΩ				±(10% v.M.+3D)								
	R _E DC+	1,00 9,99 Ω	0,01 Ω	1,3 3,7 A AC	0,25 0,99 Ω	$U_N = 120/230 \text{ V}$									
	L	10,0 29,9 Ω	0,1 Ω	0,5/1,25 A DC	1,00 9,99 Ω	$f_N = 50/60 \text{ Hz}$	±(10% v.M.+3D)	±(4% v.M.+3D)							
	U _E	0 253 V	1 V	_	Rechenwert										
R _E	R _F	0 999 Ω	1 mΩ			siehe R _F	±(20% v.M.+20 D)	±(15% v.M +20 D)							
Sel			1 Ω	1,3 2,7 A AC	0,25 300 Ω ⁴⁾	_		,	-						
Zange	R _E DC+	0 999 Ω	1 mΩ 1 Ω	0,5/1,25 A DC		$U_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	±(22% v.M.+20 D)	±(15% v.M.+20 D)							
EX-					10 kΩ 199 kΩ		±(20% v.M.+2D)	+(10% v M +3D)	_		_	_			+
TRA	Z _{ST}	0 30 MΩ	1 kΩ	2,3 mA bei 230 V	200 kΩ 30 MΩ	$U_0 = U_{L-N}$	±(10% v.M.+2D)								
		1 999 kΩ	1 kΩ			==	(1.1.1	(3.11.11.1.1.2.5)							+
		1,00 9,99 MΩ	10 kΩ			$U_{N} = 50 \text{ V}$									
		10,0 49,9 MΩ	100 kΩ			$I_N = 1 \text{ mA}$									
		1 999 kΩ	1 kΩ			U _N = 100 V									
		1,00 9,99 MΩ	10 kΩ			$I_N = 1 \text{ mA}$	Bereich kΩ	Bereich kΩ							
		10,0 99,9 MΩ 1 999 kΩ	100 kΩ				±(5% v.M.+10D)								
_	R _{ISO} , R _{E ISO}	1 999 kΩ 1,00 9,99 MΩ	1 kΩ 10 kΩ	$I_K = 1,5 \text{ mA}$	50 k $Ω$ 500 M $Ω$	U _N = 250 V	D	Doraiah ***							
R _{ISO}		10,0 99,9 MΩ	100 kΩ			$I_N = 1 \text{ mA}$	Bereich MΩ	Bereich MΩ							
		100 200 MΩ	1 MΩ				±(5% v.M.+1D)	±(3% v.M.+1D)							
]	1 999 kΩ	1 kΩ			U _N = 500 V									
		1,00 9,99 MΩ	10 kΩ			$U_N = 1000 \text{ V}$									
		10,0 99,9 MΩ 100 500 MΩ	100 kΩ 1 MΩ			$I_N = 1 \text{ mA}$									
		10 999 V-	1 V		40				-						
	U	1,00 1,19 kV	10 V		10 1,19 kV		±(3% v.M.+1D)	±(1,5% v.M.+1D)							
R _{L0}	R _{LO}	0,01 Ω 9,99 Ω	10 mΩ	I _m ≥ 200 mA	0,1 Ω 5,99 Ω	U ₀ = 4,5 V	+(40/- v/M + 2D)	±(2% v.M.+2D)							
	I DIO	10,0 Ω 199,9 Ω	100 m Ω	$I_{\rm m}^{\rm m}$ < 200 mA	6,0 Ω 100 Ω	$u_0 = 4,5 \text{ V}$	±(4% v.M.+2D)	±(∠70 v.IVI.+∠U)							

Technische Kennwerte MBASE+ und MTECH+

L . I	Messgröße										Ans	chlüss			
Funk- tion		Anzeigebereich	Auf- lösung	Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker-	2-Pol-	3-Pol-		Zangen 12 Z3512 MFL		CD1100
11011			losulig				unsionemen	unsichenien	einsatz 1)	Adapter	Adapter	WZ12 C	Z3512 A	P300	GFIIUC
		1 999 kΩ	1 kΩ			U _N = 50 V									
		1,00 9,99 MΩ 10,0 49,9 MΩ	10 kΩ 100 kΩ			$I_N = 1 \text{ mA}$									
		1 999 kΩ	1 kΩ			11 400 1/									
		1,00 9,99 MΩ	10 kΩ			$U_{N} = 100 \text{ V}$ $I_{N} = 1 \text{ mA}$	Bereich kΩ	Bereich kΩ							
		10,0 99,9 MΩ	100 kΩ			IN - I IIIA	±(5% v.M.+10D)	±(3% v.M.+10D)							
	R_{ISO} , $R_{E\ ISO}$	1 999 kΩ 1,00 9,99 MΩ	1 kΩ 10 kΩ	$I_K = 1,5 \text{ mA}$	$50~\text{k}\Omega$ $500~\text{M}\Omega$	U _N = 250 V	,	,							
R _{ISO}		10,0 99,9 MΩ	100 kΩ			$I_N = 1 \text{ mA}$	Bereich MΩ	Bereich MΩ							
		100 200 MΩ	1 ΜΩ			, N	±(5% v.M.+1D)	±(3% v.M.+1D)							
		1 999 kΩ	1 kΩ			U _N = 500 V									
		1,00 9,99 MΩ	10 kΩ			$U_{N} = 1000 \text{ V}$									
		10,0 99,9 MΩ 100 500 MΩ	100 kΩ 1 MΩ			$I_N = 1 \text{ mA}$									
	U	10 999 V-	1 V		10 1,19 kV		±(3% v.M.+1D)	±(1,5% v.M.+1D)							
		1,00 1,19 kV 0,01 Ω 9,99 Ω	10 V 10 mΩ	I _m ≥ 200 mA	0,1 Ω 5,99 Ω		,	,							
R _{LO}	R _{LO}	10,0 Ω 199,9 Ω	100 mΩ		6,0 Ω 100 Ω	$U_0 = 4,5 \text{ V}$	±(4% v.M.+2D)	±(2% v.M.+2D)							
				Wandler-			_	_							
				übersetzung 3)			5)	5)							
		0,0 99,9 mA	0,1 mA	1 V/A			±(13% v.M.+5D)	±(5% v.M.+4D)							
		100 999 mA	1 mA		5 15 A							I 15A			
		1,00 9,99 A	0,01 A		5 150 A	f _N = 50/60 Hz	±(13% v.M.+1D)	±(5% v.M.+1D)				1 10/1			
		10,0 15,0 A	0,1 A 0,01 A				±(11% v.M.+4D)	±(4% v.M.+3D)							
		1,00 9,99 A 10,0 99,9 A	0,01 A				±(11% V.IVI.+4D)	,	-			II 150A			
		100 150 A	1 A				±(11% v.M.+1D)	±(4% v.M.+1D)				11 100/			
		0,0 99,9 mA	0,1 mA		5 4000 4		±(7% v.M.+2D)	±(5% v.M.+2D)					4.0		
		100 999 mA	1 mA	1 V/A	5 1000 mA		±(7% v.M.+1D)	±(5% v.M.+1D)					1 A		
		0,00 9,99 A	0,01 A	100 mV/A	0,05 10 A	_	±(3,4% v.M.+2D)						10A		
		0,00 9,99 A	0,01 A	10 mV/A	0,5 100 A	f _N = 16,7/50/60/200/	±(3,1% v.M.+2D)	±(3% v.M.+2D)					100A		
SEN-		10,0 99,9 A	0,1 A	10 IIIV/A	0,5 100 A	400 Hz	±(3,1% v.M.+1D)	, ,					TOUR		
SOR	li. ca	0,00 9,99 A	0,01 A	3.776	F 4000 A		±(3,1% v.M.+1D)						10004		
6) 7)	I _{L/Amp}	10,0 99,9 A 100 999 A	0,1 A 1 A	1 mV/A	5 1000 A		±(3,1% v.M.+2D) ±(3,1% v.M.+1D)	. ,	-				1000A		
",		0,0 99,9 mA	0,1 mA				±(3,1 % V.IVI.+1D) ±(27% V.M.+100D)							0,03	
		100 999 mA	1 mA	1 V/A	30 1000 mA		±(27% v.M.+100b)	, ,	-					3	
		100 333 IIIA	0,01 A				±(27% v.M.+12D)	, ,	-					0,3	
		0,00 9,99 A	0,01 A	100 mV/A	0,3 10 A	$f_N = 50/60 \text{ Hz}$	±(27% v.M.+11D)	, ,	-					30	
		0,00 9,99 A	0,01 A				±(27% v.M.+100D)	, ,						3	
		10,0 99,9 A	0,1 A	10 mV/A	3 100 A		±(27% v.M.+11D)	, ,	1					300	1
		0,00 9,99 A	0,01 A	10>///	0.5 100 *		±(5% v.M.+12D)	±(3% v.M.+12D)							1004
		10,0 99,9 A	0,1 A	10 mV/A	0,5 100 A	f _N =	±(5% v.M.+2D)	±(3% v.M.+2D)							100A~
		0,00 9,99 A	0,01 A			DC/16,7/50/60/	±(5% v.M.+50D)	±(3% v.M.+50D)							
		10,0 99,9 A	0,1 A	1 mV/A	5 1000 A	200 Hz	±(5% v.M.+7D)	±(3% v.M.+7D)							1000A~
		100 999 A	1 A				±(5% v.M.+2D)	±(3% v.M.+2D)							

Legende: D = Digit, v. M. = vom Messwert

¹⁾ U > 230 V nur mit 2- bzw. 3-Pol-Adapter
2) 1 ⋅ / 2 ⋅ IΔN > 300 mA und 5 ⋅ IΔN > 500 mA und If > 300 mA nur bis U_N ≤ 230 V!
IΔN 5 ⋅ 300 mA nur mit U_N = 230 V
3) Die an der Zange gewählte Wandlerübersetzung (1/10/100/1000 mV/A) muss in Schalterstellung "SENSOR" / Menu "TYP" eingestellt werden.
4) bei R_{Eselektiv}/R_{Egesamt} < 100
5) bei den angegebenen Mess- und Eigenunsicherheiten sind die der jeweiligen Stromzange bereits enthalten.

Stromzange bereits enthalten.

Stromzange bereits enthalten. 6) Messbereich des Signaleingangs am Prüfgerät U_E : 0 ... 1,0 V_{eff} (0 ... 1,4 Vpeak) AC/DC 7) Eingangsimpedanz des Signaleingangs am Prüfgerät: 800 k Ω 8) bei $f_N <$ 45 Hz => $U_N <$ 253 V

Technische Kennwerte MPRO, MXTRA & SECULIFE IP

				Eingangs-							Ans	schlüss	е		
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	impedanz/ Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz	2-Pol- Adapter	3-Pol- Adapter	Sonde	WZ12C	Zanger Z3512A	MFLEX P300
	U _{L-PE}	0 99,9 V	0,1 V		0,3 600 V ¹⁾		±(2% v.M.+5D)	±(1% v.M.+5D)							
	U _{N-PE}	100 600 V 15,0 99,9 Hz	1 V 0,1 Hz	-	DC 15.4 420 Hz	U _N = 120 V	±(2% v.M.+1D)	±(1% v.M.+1D)	•						
	I	100 999 Hz 0 99,9 V	1 Hz 0,1 V	-	,	230 V 400 V	±(0,2% v.M.+1D) ±(3% v.M.+5D)	±(0,1% v.M.+1D) ±(2% v.M.+5D)				-			
U	U _{3~}	100 600 V	1 V	5 ΜΩ	0,3 600 V	$f_{\rm N} = 16^2/_3/50/$	±(3% v.M.+1D)	±(2% v.M.+3D) ±(2% v.M.+1D)							
	U _{SONDE}	0 99,9 V 100 600 V	0,1 V 1 V		1,0 600 V		±(2% v.M.+5D) ±(2% v.M.+1D)								
	U _{L-N}	0 99,9 V	0,1 V	-	1,0 600 V ¹⁾	60/200/400 Hz	±(3% v.M.+5D)	±(2% v.M.+5D)							
		100 600 V	1 V	0.2.1	5 70 V		±(3% v.M.+1D) +10% v.M.+1D	±(2% v.M.+1D) +1% v.M1D							
	U _{IΔN}	0 70,0 V 10 Ω 999 Ω	0,1 V 1 Ω	0,3 · I _{ΔN}	5 70 V	-	+10% V.IVI.+1D	+9% v.M.+1D							
		1,00 k Ω 6,51 k Ω	0,01 kΩ	$I_{\Delta N} = 10 \text{ mA} \cdot 1,05$											
		3 Ω 999 Ω 1 kΩ 2,17 kΩ	1 Ω 0,01 kΩ	$I_{\Delta N} = 30 \text{ mA} \cdot 1,05$	Rechenwert	U _N = 120 V									
	R _F	1Ω 651 Ω	1Ω	I _{AN} =100 mA · 1,05	aus	230 V									
		0,3 Ω 99,9 Ω	0,1 Ω	I _{AN} =300 mA · 1,05	$R_E = U_{I\Delta N} / I_{\Delta N}$	400 V ²⁾									
		100 Ω 217 Ω 0,2 Ω 9,9 Ω	1 Ω 0,1 Ω	ΔΝ σσσ π.π. 1,σσ		f _N = 50/60 Hz									
$\mathbf{I}_{\Delta \mathbf{N}}$		10 Ω 130 Ω	1Ω	$I_{\Delta N}$ =500 mA · 1,05		U _I = 25/50 V									
	$I_F (I_{\Delta N} = 6 \text{ mA})$	1,8 7,8 mA		1,8 7,8 mA	1,8 7,8 mA	0[= 20/00 V						wahl-			
I _F	$I_F (I_{\Delta N} = 10 \text{ mA})$	3,0 13,0 mA	0,1 mA	3,0 13,0 mA	3,0 13,0 mA	I _{ΔN} =		1/0 50/				weise			
	$I_F (I_{\Delta N} = 30 \text{ mA})$ $I_F (I_{\Delta N} = 100 \text{ mA})$	9,0 39,0 mA 30 130 mA	1 mA	9,0 39,0 mA 30 130 mA	9,0 39,0 mA 30 130 mA	6 mA 10 mA	±(5% v.M.+1D)	±(3,5% v.M.+2D)							
	$I_F (I_{\Delta N} = 300 \text{ mA})$	90 390 mA	1 mA	90 390 mA	90 390 mA	30 mA									
	$I_F (I_{\Delta N} = 500 \text{ mA})$	150 650 mA	1 mA	150 650 mA	150 650 mA	100 mA 300 mA									
	$U_{ \Delta} / U_{L} = 25 \text{ V}$	0 25,0 V 0 50,0 V	0,1 V	wie I_{Δ}	0 25,0 V 0 50,0 V	500 mA ²⁾	+10% v.M.+1D	+1% v.M1D +9% v.M.+1 D							
	$\begin{array}{c c} U_{I\Delta} / U_{L} = 50 \text{ V} \\ \hline t_{A} (I_{\Delta N} \cdot 1) \end{array}$	0 50,0 v	1 ms	6 500 mA	0 50,0 v	-		+9% V.IVI.+1 D							
	t _A (l _{ΔN} · 2)	0 1000 ms	1 ms	2 · 6 2 · 500 mA	0 1000 ms		±4 ms	±3 ms							
	t _A (I _{∆N} · 5)	0 40 ms	1 ms	5 · 6 5 · 300 mA	0 40 ms										
	Z _{L-PE} ()	0 999 mΩ		3,7 4,7 A AC	0,10 0,49 Ω 0,50 0,99 Ω	U _N = 120/230 V 400/500 V ¹⁾	±(10% v.M.+20D) ±(10% v.M.+20D)								
	Z _{L-N}	1,00 9,99 Ω	1 mΩ 0,01 Ω		1,00 9,99 Ω		±(5% v.M.+3D)	±(3% v.M.+3D)	_						
	Z _{L-PE} + DC	$0 \dots 999 \ \text{m} \Omega$ $1,00 \dots 9,99 \ \Omega$ $10,0 \dots 29,9 \ \Omega$	0,1 Ω	3,7 4,7 A AC 0,5/1,25 A DC	0,25 0,99 Ω 1,00 9,99 Ω		±(18% v.M.+30D) ±(10% v.M.+3D)								
Z _{I -PF}	I _K (Z _{L-PE} —,	0 9,9 A	0,1 A		120 (108 132) V										
		10 999 A 1,00 9,99 kA	1 A 10 A		230 (196 253) V 400 (340 440) V 500 (450 550) V 10 100 Ω 100 1000 Ω		Rechenwer	t aus Z _{L-PE}		Z _{L-PE}					
Z_{L-N}	Z _{L-PE} — + DC)	10,0 50,0 kA	100 A							∠L-PE					
	Z _{L-PE} (15 mA)	$0,5 \dots 99,9 \Omega$ $100 \dots 999 \Omega$	0,1 Ω 1 Ω				±(10% v.M.+10D) ±(8% v.M.+2D)	±(2% v.M.+2D) ±(1% v.M.+1D)							
				1E m \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	100 mA 12 A	$U_N = 120/230 \text{ V}$ $f_N = 16^2/3^{8}/50/$		±(170 V.IVI.+1D)							
	I _K (15 mA)	0,10 9,99 A 10,0 99,9 A	0,01 A 0,1 A	15 mA AC	(U _N = 120 V) 200 mA 25 A	$I_N = 16^2 / 3^3 / 50 / 60 \text{ Hz}$	Rechenv $I_K = U_N/Z_{L-}$								
		100 999 A ¹⁴⁾	1 A		$(U_N = 230 \text{ V})$										
		$0 999 \ \text{m} \Omega$	1 mΩ	3,7 4,7 A AC	$0,10 \ \Omega \dots 0,49 \ \Omega $ $0,50 \ \Omega \dots 0,99 \ \Omega$		±(10% v.M.+20D) ±(10% v.M.+20D)								
	R _{E.sl} (ohne Sonde)	1,00 9,99 Ω 10,0 99,9 Ω	0,01 Ω 0,1 Ω	3,7 4,7 A AC 400 mA AC	$1,0 \Omega 9,99 \Omega$	U _N wie Funktion U 1)	±(5% v.M.+3D)	±(3% v.M.+3D)							
	R _E (mit Sonde)	100 999 Ω	1Ω	40 mA AC	10 Ω99,9 Ω 100 Ω999 Ω	f _N = 50/60 Hz	±(10% v.M.+3D)								
		1 kΩ 9,99 kΩ	0,01 kΩ	4 mA AC	1 kΩ9,99 kΩ		±(10% v.M.+3D) ±(10% v.M.+3D)								
_	R _{E (15 mA)}	0,5 99,9 Ω	0,1 Ω	45 4 40	10 Ω99,9 Ω	U _N = 120/230 V	±(10% v.M.+10D)	±(2% v.M.+2D)							
R _E	(ohne/mit Sonde)	100 999 Ω	1Ω	15 mA AC	100 Ω999 Ω	$f_N = 50/60 \text{ Hz}$	±(8% v.M.+2D)	±(1% v.M.+1D)							
	R _{E.SI} (ohne Sonde)	0 000 mQ	1 mO												
	+ DC	$0 \dots 999 \ \text{m}\Omega$ 1,00 \dots 9,99 Ω	$1 \text{ m}\Omega$ $0,01 \Omega$	3,7 4,7 A AC	0,25 0,99 Ω		±(18% v.M.+30D)								
	R _{E.sl} (mit Sonde) + DC	$10,0\dots 29,9\ \Omega$	0,1 Ω	0,5/1,25 A DC	1,00 9,99 Ω	$f_N = 50/60 \text{ Hz}$	±(10% v.M.+3D)	±(4% V.IVI.+3D)							
	U _E	0 253 V	1 V	3,7 4,7 A AC	R _E = 0,10 9,99 Ω	$U_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	Rechenwert U _E	$= U_N \cdot R_E / R_{E,sl}$							
	P	0 999 m Ω	1 mΩ	2,1 A AC				-							
	R _{E.sel}	1,00 9,99 Ω	0,01 Ω	2,1 A AC	0,25 300 Ω ⁴⁾	U _N = 120/230 V	±(20% v.M.+20 D)	±(15% v.M.+20 D)							
R _E	(nur mit Sonde)	10,0 99,9 Ω 100 999 Ω	0,1 Ω 1 Ω	400 mA AC 40 mA AC		$f_N = 50/60 \text{ Hz}$,	, , , , , , , , , , , , , , , , , , ,							
Sel Zange	R _{E.sel}	0 999 mΩ	1 mΩ		0.05										
Lange	+ DC	1,00 9,99 Ω 10,0 99,9 Ω	0,01 Ω 0,1 Ω	3,7 4,7 A AC 0,5/1,25 A DC	$0,25 300 \Omega$ $R_{E,ges} < 10 \Omega^{4}$	$U_N = 120/230 \text{ V}$ $f_N = 50/60 \text{ Hz}$	±(22% v.M.+20 D)	±(15% v.M.+20 D)							
	(nur mit Sonde)	10,0 99,9 Ω 100 999 Ω	1Ω	0,0/1,20 A DO	"E.ges > 10 52	IN - 30/00 HZ									
	Z _{ST}	0 30 MΩ	1 kΩ	2,3 mA bei 230 V	10 kΩ 199 kΩ 200 kΩ 30 MΩ	$U_0 = U_{L-N}$	±(20% v.M.+2D) ±(10% v.M.+2D)								
						IT-Netz-Nenn-	±(10/0 V.IVI.⊤∠D)	_(∪ /0 v.ivi.⊤∪U)							
EXTRA		20 6461-0	110	IT Notzono	20 kΩ 199 kΩ	spanungen	±7%	±5%							
	IMD-Test	20 648 k $Ω$ 2,51 M $Ω$		IT-Netzspannung U.it = 90 550 V	200 kΩ 648 kΩ	UN.it = 120/230/400/	±12%	±10%							
		·			2,51 MΩ	500 V	±3%	±2%							
						$f_N = 50/60 \text{ Hz}$									

F1.			A £				D-t-i-b	Fi			Ans	chlüs			
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	Prüfstrom	Messbereich	Nennwerte	Betriebsmess- unsicherheit	Eigen- unsicherheit	Stecker- einsatz 1)	2-Pol- Adapter	3-Pol- Adapter	WZ12 C	Zangen Z3512 A	MFLEX P300	CP1100
	R _{ISO} , R _{E ISO}	1 999 kΩ 1,00 9,99 MΩ 10,0 49,9 MΩ	1 kΩ 10 kΩ 100 kΩ		-	$U_{N} = 50 \text{ V}$ $I_{N} = 1 \text{ mA}$	Bereich $k\Omega$ $\pm (5\% \text{ v.M.} + 10\text{D})$ Bereich $M\Omega$ $\pm (5\% \text{ v.M.} + 1\text{D})$								
		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ	1 kΩ 10 kΩ 100 kΩ			$\begin{array}{c} U_N = 100 \text{ V} \\ I_N = 1 \text{ mA} \end{array}$									
R _{ISO}		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ 100 200 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ	$I_K = 1,5 \text{ mA}$	50 kΩ 500 MΩ	$\begin{array}{l} U_N = 250 \text{ V} \\ I_N = 1 \text{ mA} \end{array}$			•	•					
		1 999 kΩ 1,00 9,99 MΩ 10,0 99,9 MΩ 100 500 MΩ	1 kΩ 10 kΩ 100 kΩ 1 MΩ			$U_{N} = 500 \text{ V}$ $U_{N} = 1000 \text{ V}$ $I_{N} = 1 \text{ mA}$									
	U	10 999 V– 1,00 1,19 kV	1 V 10 V		10 1,19 kV		±(3% v.M.+1D)	±(1,5% v.M.+1D)							
R _{LO}	R_{LO}	0,01 Ω 9,99 Ω 10,0 Ω 199,9 Ω	$10~\text{m}\Omega$ $100~\text{m}\Omega$	$I_{\rm m} \ge 200 \text{ mA}$ $I_{\rm m} < 200 \text{ mA}$	$0,1 \Omega 5,99 \Omega$ $6,0 \Omega 100 \Omega$	$U_0 = 4.5 \text{ V}$	±(4% v.M.+2D)	±(2% v.M.+2D)							
				Wandler- übersetzung ³⁾			5)	5)							
		0,0 99,9 mA	0,1 mA	aborootzung	5 15 A		±(13% v.M.+5D)	±(5% v.M.+4D)							
		100 999 mA 1,00 9,99 A	1 mA 0,01 A	1 V/A		f 50/60 U-	±(13% v.M.+1D)	±(5% v.M.+1D)				I 15A			
		10,0 15,0 A 1,00 9,99 A 10,0 99,9 A 100 150 A	0,1 A 0,01 A 0,1 A 1 A	1 mV/A	5 150 A	f _N = 50/60 Hz	±(11% v.M.+4D) ±(11% v.M.+1D)	±(4% v.M.+3D) ±(4% v.M.+1D)	-			II 150A			
		0,0 99,9 mA 100 999 mA	0,1 mA 1 mA	1 V/A	5 1000 mA		±(7% v.M.+2D) ±(7% v.M.+1D)	±(5% v.M.+2D) ±(5% v.M.+1D)					1 A		
		0,00 9,99 A	0,01 A	100 mV/A	0,05 10 A	f	±(3,4% v.M.+2D)	±(3% v.M.+2D)					10A		
SEN-		0,00 9,99 A 10,0 99,9 A	0,01 A 0,1 A	10 mV/A	0,5 100 A	f _N = 16,7/50/60/200/ 400 Hz	±(3,1% v.M.+2D) ±(3,1% v.M.+1D)						100A		
SOR 6) 7)	$I_{L/Amp}$	0,00 9,99 A 10,0 99,9 A 100 999 A	0,01 A 0,1 A 1 A	1 mV/A	5 1000 A	400112	±(3,1% v.M.+1D) ±(3,1% v.M.+2D) ±(3,1% v.M.+1D)	±(3% v.M.+2D)					1000A		
		0,0 99,9 mA 100 999 mA	0,1 mA 1 mA	1 V/A	30 1000 mA		±(27% v.M.+100D) ±(27% v.M.+11D)							0,03	
		0,00 9,99 A	0,01 A 0,01 A	100 mV/A	0,3 10 A f _N =	f _N = 50/60 Hz	±(27% v.M.+12D) ±(27% v.M.+11D)	,						0,3 30	
		0,00 9,99 A 10,0 99,9 A	0,01 A 0,1 A	10 mV/A	3 100 A		±(27% v.M.+100D) ±(27% v.M.+11D)	, ,						3	
		0,00 9,99 A 10,0 99,9 A	0,01 A 0,1 A	10 mV/A	0,5 100 A	f _N =	±(5% v.M.+12D) ±(5% v.M.+2D)	±(3% v.M.+2D)							100A~
		0,00 9,99 A 10,0 99,9 A 100 999 A	0,01 A 0,1 A 1 A	1 mV/A	5 1000 A	DC/16,7/50/60/ 200 Hz	±(5% v.M.+50D) ±(5% v.M.+7D) ±(5% v.M.+2D)	±(3% v.M.+50D) ±(3% v.M.+7D) ±(3% v.M.+2D)							1000A~

 $^{^{1)}}$ U > 230 V nur mit 2- bzw. 3-Pol-Adapter

reits enthalten. 6) Messbereich des Signaleingangs am Prüfgerät UE: 0 ... 1,0 Veff (0 ... 1,4 Vpeak) AC/DC 7) Eingangsimpedanz des Signaleingangs am Prüfgerät: 800 k Ω 8) bei f $_{\rm N}$ < 45 Hz => U $_{\rm N}$ < 253 V

Sonderfunktion MPRO, MXTRA

Funk			۸4	Prüfstrom/		Datrichamana	Figon		Ansch	lüsse	
Funk- tion	Messgröße	Anzeigebereich	Auf- lösung	Signalfrequenz	Messbereich	Betriebsmess- unsicherheit	Eigen- unsicherheit		Prüfstecker	Stromz	-
				٥,				PRO-RE	PRO-RE/2	Z3512A	Z591B
	RE 3-Pol	$0,00 \dots 9,99 \Omega$	0,01 Ω	16 mA/128 Hz	$1,00~\Omega~~19,9~\Omega$	$\pm (10\% \text{ v.M.} + 10D)$	±(3% v.M.+5D)				
	TIL 3-1 01	10,0 99,9 Ω	0,1 Ω	1,6 mA/128 Hz	$5,0~\Omega~~199~\Omega$	+1Ω	+ 0,5 Ω	0)			
		100 999 Ω	1 Ω	0,16 mA/128 Hz	$50~\Omega~~1,99~k\Omega$			6)			
	RE 4-Pol	1,00 9,99 kΩ	$0,01~\mathrm{k}\Omega$	0,16 mA/128 Hz	$0,50$ k Ω $19,9$ k Ω	±(10% v.M.+10D)	±(3% v.M.+5D)				
		10,0 50,0 kΩ	0,1 kΩ	0,16 mA/128 Hz	$0,50$ k Ω $49,9$ k Ω						
		0,00 9,99 Ω	0,01 Ω	16 mA/128 Hz							
	RE 4-Pol	10,0 99,9 Ω	0,1 Ω	16 mA/128 Hz							
	selektiv	100 999 Ω	1 Ω	1,6 mA/128 Hz	$1,00~\Omega~~9,99~\Omega$	±(15% v.M.+10D)	±(10% v.M.+10D)	6)		9)	
	mit Messzange	1,00 9,99 kΩ	$0,01~\mathrm{k}\Omega$	0,16 mA/128 Hz	$10,0~\Omega~~200~\Omega$	±(20% v.M.+10D)	±(15% v.M.+10D)				
		10,0 19,9 kΩ ¹⁵⁾	$0,1~\mathrm{k}\Omega$	0,16 mA/128 Hz		10)					
DE		10,0 49,9 kΩ ¹⁶⁾	0,1 kΩ	0,16 mA/128 Hz							
RE BAT				16 mA/128 Hz	100 Ω m 9,99 k Ω m ¹²⁾						
	RE spez	0,0 9,9 Ωm	0,1 Ωm	1,6 mA/128 Hz	500 Ω m 9,99 k Ω m ¹²⁾	±(20% v.M.+10D)	±/12% v.M + 10D)				
		100 999 Ωm	1Ωm	0,16 mA/128 Hz	5,00 kΩm 9,99 kΩm ¹³⁾	11)	11)	6)			
	(p)	1,00 9,99 kΩm	$0,01~\mathrm{k}\Omega\mathrm{m}$	0,16 mA/128 Hz	5,00 kΩm 9,99 kΩm ¹³⁾	,					
				0,16mA/128 Hz	5,00 kΩm 9,99 kΩm ¹³⁾						
	Sondenabstand	0,1 999 m									
	d (p)	,									
		$0,00 9,99 \Omega$	0,01 Ω								
	RE 2-Zangen	10,0 99,9 Ω	0,1 Ω	30 V / 128 Hz	0,10 9,99 Ω	±(10% v.M.+5D)			7)	9)	8)
	nc 2-Zangen	100 999 Ω	1 Ω		10,0 99,9 Ω	±(20% v.M.+5D)	±(12% v.M.+5D)				
		1,00 1,99 kΩ	$0.01 \mathrm{k}\Omega$								

Legende: D = Digit, v. M. = vom Messwert

 $^{^{\}prime\prime}$ U > 230 V nur mit 2- bzw. 3-Pol-Adapter 2) 1 · / 2 · IΔN > 300 mA und 5 · IΔN > 500 mA und If > 300 mA nur bis U_N ≤ 230 V! 3) Die an der Zange gewählte Wandlerübersetzung (1/10/100/1000 mV/A) muss in Schalterstellung "SENSOR" / Menu "TYP" eingestellt werden. 4) bei R_{Eselektiv}/R_{Egesamt} < 100

⁵⁾ bei den angegebenen Messunsicherheiten sind die der jeweiligen Stromzange be-

Signalfrequenz ohne Störsignal
 Adapterkabel PRO-RE (Z501S) für Prüfstecker zum Anschluss der Erdsonden (E-Set 3/4)
 Adapterkabel PRO-RE/2 (Z502T) für Prüfstecker zum Anschluss der Generator-

zange (E-CLIP2) 8) Generatorzange: E-CLIP2 (Z591B)

⁹⁾ Generatorzange: E-OLIF 2 (2007-5) 9) Messzange: Z3512A (Z225A) $^{10)}$ bei RE.sel/RE < 10 oder Messzangenstrom > 500 μ A $^{11)}$ bei RE.H/RE \leq 100 und RE.E/RE \leq 100

¹²⁾bei d = 20 m ¹³⁾bei d= 2 m

¹⁴⁾ bei Z_{L-PE} < 0,5 Ω wird I_k > U_N/0,5 Ω angezeigt ¹⁵⁾ nur bei RANGE = 20 k Ω

 $^{^{16)}}$ nur bei RANGE = 50 k Ω oder AUTO

Kennwerte PROFITEST MASTER & SECULIFE IP

Referenzbedingungen

Netzspannung 230 V \pm 0,1 % Netzfrequenz 50 Hz \pm 0,1 % Frequenz der Messgröße 45 Hz ... 65 Hz

Kurvenform d. Messgröße Sinus (Abweichung zwischen Effektiv-

und Gleichrichtwert ≤ 0,1 %)

 $\begin{tabular}{lll} Netzimpedanzwinkel & cos $\phi = 1$\\ Sondenwiderstand & $\leq 10 \ \Omega$\\ Versorgungsspannung & 12 \ V \pm 0,5 \ V\\ Umgebungstemperatur & + 23 \ ^{\circ}C \pm 2 \ K\\ Relative Luftfeuchte & 40\% \dots 60\% \\ \end{tabular}$

Fingerkontakt bei Prüfung Potenzialdifferenz

auf Erdpotenzial

Standortisolation rein ohmsch

Nenngebrauchsbereiche

Spannung U_N 120 V (108 ... 132 V) 230 V (196 ... 253 V) 400 V (340 ... 440 V) 16 ²/₃ Hz (15,4 ... 18 Hz) Frequenz f_N 50 Hz (49,5 ... 50,5 Hz) (59,4 ... 60,6 Hz) 60 Hz (190 ... 210 Hz) 200 Hz 400 Hz (380 ... 420 Hz)

Gesamtspannungsbereich U_Y 65 ... 550 V Gesamtfrequenzbereich 15,4 ... 420 Hz

Kurvenform Sinus

Temperaturbereich $0 \, ^{\circ}\text{C} \dots + 40 \, ^{\circ}\text{C}$ Versorgungsspannung $8 \dots 12 \, \text{V}$

Netzimpedanzwinkel entsprechend $\cos \varphi = 1 \dots 0.95$

Sondenwiderstand $< 50 \text{ k}\Omega$

Stromversorgung

Akkus 8 Stück AA 1,5 V,

wir empfehlen, ausschließlich den mitgelieferten Akkupack zu verwenden (Akkupack Artikelnr. Z502H)

(AKKUPACK ATIKEITI. 2502H)
Anzahl der Messungen (Standard-Setup mit Beleuchtung)

- bei R_{ISO} 1 Messung - 25 s Pause:

ca. 1100 Messungen

- bei $R_{I,\Omega}$ Auto-Umpolung/1 Ω

(1 Messzyklus) – 25 s Pause:

ca. 1000 Messungen

Akkutest symbolische Anzeige der Akku-

spannung BAT

Akkusparschaltung Die Anzeigebeleuchtung ist abschaltbar.

Das Prüfgerät schaltet sich nach der letzten Tastenbetätigung automatisch ab. Die Einschaltdauer kann vom Anwender selbst gewählt werden.

Sicherheitsabschaltung Das Gerät schaltet bei zu niedriger Ver-

sorgungsspannung ab bzw. kann nicht

eingeschaltet werden.

Ladebuchse Eingelegte Akkus können durch

Anschluss eines Ladegeräts an die Ladebuchse direkt aufgeladen werden:

Ladegerät Z502R

Ladezeit ca. 2 Stunden *

* maximale Ladezeit bei vollständig entladenen Akkus. Ein Timer im Ladegerät begrenzt die Ladezeit auf maximal 4 Stunden

Überlastbarkeit

 RISO
 1200 V dauernd

 UL-PE, UL-N
 600 V dauernd

 RCD, RE, RE
 440 V dauernd

Z_{L-PE}, Z_{L-N} 550 V (begrenzt die Anzahl der Messungen und Pausenzeit, bei Überlas-

tung schaltet ein Thermo-Schalter das

Gerät ab.)

R_{LO} Elektronischer Schutz verhindert das

Einschalten, wenn Fremdspannung

anliegt.

Schutz durch

Feinsicherungen FF 3,15 A 10 s.

> 5 A - Auslösen der Sicherungen

Elektrische Sicherheit

Schutzklasse II nach IEC 61010-1/EN 61010-1/

VDE 0411-1

Nennspannung 230/400 V (300/500 V)

Prüfspannung 3,7 kV 50 Hz

Messkategorie CAT III 600 V bzw. CAT IV 300 V

Verschmutzungsgrad 2

Sicherungen

Anschluss L und N je 1 G-Schmelzeinsatz

FF 3,15/500G 6,3 mm x 32 mm

Elektromagnetische Verträglichkeit EMV

Produktnorm	EN 61326-1:20	006
Störaussendung		Klasse
EN 55022		A
Störfestigkeit	Prüfwert	Leistungsmerkmal
EN 61000-4-2	Kontakt/Luft - 4 kV/8 kV	
EN 61000-4-3	10 V/m	
EN 61000-4-4	Netzanschluss - 2 kV	
EN 61000-4-5	Netzanschluss - 1 kV	
EN 61000-4-6	Netzanschluss - 3 V	
EN 61000-4-11	0,5 Periode / 100%	

Umgebungsbedingungen

Genauigkeit $0 \dots + 40 \,^{\circ}\text{C}$ Betrieb $-5 \dots + 50 \,^{\circ}\text{C}$

Lagerung -20 ... + 60 °C (ohne Akkus) relative Luftfeuchte max. 75%, Betauung ist auszuschließen

Höhe über NN max. 2000 m

Mechanischer Aufbau

Anzeige Mehrfachanzeige mittels Punktmatrix

128 x 128 Punkte

Abmessungen BxLxT = 260 mm x 330 mm x 90 mm

Gewicht ca. 2.7 kg mit Akkus

Schutzart Gehäuse IP 40, Prüfspitze IP 40 nach

EN 60529/DIN VDE 0470-1

(nur MTECH+, MXTRA & SECULIFE IP)

Tabellenauszug zur der Bedeutung des IP-Codes

	IP XY	Schutz gegen Eindringen von	IP XY	Schutz gegen Eindringen von
	(1. Ziffer X)	festen Fremdkörpern	(2. Ziffer Y)	Wasser
ı	4	≥ 1.0 mm Ø	0	nicht geschützt

Datenschnittstellen

Typ USB-Slave für PC-Anbindung
Typ RS232 für Barcode- und RFID-Leser
Typ Bluetooth® für PC-Anbindung

20 Wartung

Firmwarestand und Kalibrierinfo 20.1

Siehe Kap. 4.6.

20.2 Akkubetrieb und Ladevorgang

Überzeugen Sie sich in regelmäßigen kurzen Abständen oder nach längerer Lagerung Ihres Gerätes, dass die Akkus nicht ausgelaufen sind.

Hinweis

Wir empfehlen vor längeren Betriebspausen (z. B. Urlaub), die Akkus zu entfernen. Hierdurch verhindern Sie Tiefentladung oder Auslaufen, welches unter ungünstigen Umständen zur Beschädigung Ihres Gerätes führen kann.

Ist die Akkuspannung unter den zulässigen Wert BAT abgesunken, erscheint das nebenstehende Piktogramm. Zusätzlich wird "Low Batt!!!" zusammen mit einem Akkusymbol eingeblendet. Bei sehr stark entladenen Akkus arbeitet das Gerät nicht. Es erscheint dann auch keine Anzeige.

Achtung!

Verwenden Sie zum Laden des im Prüfgerät eingesetzten Kompakt Akku-Pack (Z502H) nur das Ladegerät Z502R. Vor Anschluss des Ladegeräts an die Ladebuchse stellen Sie folgendes sicher:

- der Kompakt Akku-Pack (Z502H) ist eingelegt, keine handelsüblichen Akku-Packs, keine Einzelakkus, keine Batterien
- das Prüfgerät ist allpolig vom Messkreis getrennt
- das Prüfgerät bleibt während des Ladevorgangs ausgeschaltet.

Falls die Akkus bzw. der Akku-Pack (Z502H) längere Zeit (> 1 Monat) nicht verwendet bzw. geladen worden ist (bis zur Tiefentladung):

Beobachten Sie den Ladevorgang (Signalisierung durch LEDs am Ladegerät) und starten Sie gegebenenfalls einen weiteren Ladevorgang (nehmen Sie das Ladegerät hierzu vom Netz und trennen Sie es auch vom Prüfgerät. Schließen Sie es danach wieder an). Beachten Sie, dass die Systemuhr in diesem Fall nicht weiterläuft und bei Wiederinbetriebnahme neu gestellt werden muss.

Ladevorgang mit dem Ladegerät Z502R

Setzen Sie den für Ihr Land passenden Netzstecker in das Ladegerät ein.

Achtung!

Stellen Sie sicher, dass der Kompakt Akku-Pack (Z502H) eingelegt ist und kein Batterieträger.

Verwenden Sie für das Laden im Gerät ausschließlich den mitgelieferten oder als Zubehör lieferbaren Kompakt Akku-Pack (Z502H) mit verschweißten Zellen.

Verbinden Sie das Ladegerät über den Klinkenstecker mit dem Prüfgerät und schließen Sie das Ladegerät über den Wechselstecker an das 230 V-Netz an. (Das Ladegerät ist nur für Netzbetrieb geeignet!)

Achtung!

Schalten Sie das Prüfgerät während des Ladevorgangs nicht ein. Der Überwachung des Ladevorgangs durch den Mikrocontroller kann ansonsten gestört werden und die unter Technische Daten angegebenen Ladezeiten können nicht mehr garantiert werden.

- Für die Bedeutung der LED-Kontrollanzeigen während des Ladevorgangs beachten Sie bitte die Bedienungsanleitung, die dem Ladegerät beiliegt.
- Entfernen Sie das Ladegerät erst vom Prüfgerät, wenn die grüne LED (voll/ready) leuchtet.

20.3 Sicherungen

Hat aufgrund einer Überlastung eine Sicherung ausgelöst, so erscheint eine entsprechende Fehlermeldung im Anzeigefeld. Die Spannungsmessbereiche des Gerätes sind aber weiterhin in Funktion.

Sicherung auswechseln

Achtung!

Trennen Sie vor dem Öffnen der Sicherungsfachdeckel das Gerät allpolig vom Messkreis!

- Lösen Sie die Schlitzschrauben der Sicherungsfachdeckel neben der Netzanschlussleitung mit einem Schraubendreher. Die Sicherungen sind jetzt zugänglich.
- Ersatzsicherungen finden Sie nach Öffnen des Akkufachdeckels.

Achtung!

Falsche Sicherungen können das Messgerät schwer beschädigen.

Es dürfen nur die Originalsicherungen von GMC-I Messtechnik GmbH (Bestell-Nr. 3-578-285-01 / SIBA 7012540.3,15 SI-EINSATZ FF 3,15/500 6,3X32) verwen-

Nur Originalsicherungen gewährleisten den erforderlichen Schutz durch geeignete Auslösecharakteristika. Sicherungen zu überbrücken bzw. zu reparieren ist unzulässig und lebensgefährlich!

Bei Verwendung von Sicherungen mit anderem Nennstrom, anderem Schaltvermögen oder anderer Auslösecharakteristik besteht die Gefahr der Beschädigung des Gerätes!

- Nehmen Sie die defekte Sicherung heraus und ersetzen Sie sie durch eine neue.
- Setzen Sie den Sicherungsfachdeckel mit der neuen Sicherung wieder ein und verriegeln Sie diesen durch Rechtsdrehung.

20.4 Gehäuse

Eine besondere Wartung des Gehäuses ist nicht nötig. Achten Sie auf eine saubere Oberfläche. Verwenden Sie zur Reinigung ein leicht feuchtes Tuch. Besonders für die Gummischutzflanken empfehlen wir ein feuchtes flusenfreies Mikrofasertuch. Vermeiden Sie den Einsatz von Putz-, Scheuer- und Lösungsmitteln.

Rücknahme und umweltverträgliche Entsorgung

Bei dem Gerät handelt es sich um ein Produkt der Kategorie 9 nach ElektroG (Überwachungs- und Kontrollinstrumente). Dieses Gerät fällt unter die RoHS Richtlinie. Im Übrigen weisen wir darauf hin, dass der aktuelle Stand hierzu im Internet bei www.gossenmetrawatt.com unter dem Suchbegriff WEEE zu finden ist.

Nach WEEE 2012/19/EU und ElektroG kennzeichnen wir unsere Elektro- und Elektronikgeräte mit dem nebenstehenden Symbol nach DIN EN 50419. Diese Geräte dürfen nicht mit dem Hausmüll entsorgt werden. Bezüglich der Altgeräte-Rücknahme wenden Sie sich bitte an unseren Service, Anschrift siehe Kapitel 22.

Sofern Sie in Ihrem Gerät Batterien oder Akkus einsetzen, die nicht mehr leistungsfähig sind, müssen diese ordnungsgemäß nach den gültigen nationalen Richtlinien entsorgt werden. Batterien oder Akkus können Schadstoffe oder Schwermetalle enthalten wie z. B. Blei (PB), Cd (Cadmium) oder Quecksilber

Das nebenstehende Symbol weist darauf hin, dass Batterien oder Akkus nicht mit dem Hausmüll entsorgt werden dürfen, sondern bei hierfür eingerichteten Sammelstellen abgegeben werden müssen.

21 Anhang

21.1 Tabellen zur Ermittlung der maximalen bzw. minimalen Anzeigewerte unter Berücksichtigung der maximalen Betriebsmessunsicherheit des Gerätes

Tabelle 1

Z _{L-PE.} (Vol	lwelle) / Z _{L-N} (Ω)	Z _{L-PE.} (+/	'- Halbwelle) (Ω)
Grenzwert	Max. Anzeigewert	Grenzwert	Max. Anzeigewert
0,10	0,07	0,10	0,05
0,15	0,11	0,15	0,10
0,20	0,16	0,20	0,14
0,25	0,20	0,25	0,18
0,30	0,25	0,30	0,22
0,35	0,30	0,35	0,27
0,40	0,34	0,40	0,31
0,45	0,39	0,45	0,35
0,50	0,43	0,50	0,39
0,60	0,51	0,60	0,48
0,70	0,60	0,70	0,56
0,80	0,70	0,80	0,65
0,90	0,79	0,90	0,73
1,00	0,88	1,00	0,82
1,50	1,40	1,50	1,33
2,00	1,87	2,00	1,79
2,50	2,35	2,50	2,24
3,00	2,82	3,00	2,70
3,50	3,30	3,50	3,15
4,00	3,78	4,00	3,60
4,50	4,25	4,50	4,06
5,00	4,73	5,00	4,51
6,00	5,68	6,00	5,42
7,00	6,63	7,00	6,33
8,00	7,59	8,00	7,24
9,00	8,54	9,00	8,15
9,99	9,48	9,99	9,05

Tabelle 2

		R _E / F	R _{ESchl.} (Ω)		
Grenzwert	Max.	Grenzwert		Grenz-	Max.
	Anzeigewert		Anzeigewert	wert	Anzeigewert
0,10	0,07	10,0	9,49	1,00 k	906
0,15	0,11	15,0	13,6	1,50 k	1,36 k
0,20	0,16	20,0	18,1	2,00 k	1,81 k
0,25	0,20	25,0	22,7	2,50 k	2,27 k
0,30	0,25	30,0	27,2	3,00 k	2,72 k
0,35	0,30	35,0	31,7	3,50 k	3,17 k
0,40	0,34	40,0	36,3	4,00 k	3,63 k
0,45	0,39	45,0	40,8	4,50 k	4,08 k
0,50	0,43	50,0	45,4	5,00 k	4,54 k
0,60	0,51	60,0	54,5	6,00 k	5,45 k
0,70	0,60	70,0	63,6	7,00 k	6,36 k
0,80	0,70	80,0	72,7	8,00 k	7,27 k
0,90	0,79	90,0	81,7	9,00 k	8,17 k
1,00	0,88	100	90,8	9,99 k	9,08 k
1,50	1,40	150	133		
2,00	1,87	200	179		
2,50	2,35	250	224		
3,00	2,82	300	270		
3,50	3,30	350	315		
4,00	3,78	400	360		
4,50	4,25	450	406		
5,00	4,73	500	451		
6,00	5,68	600	542		
7,00	6,63	700	633		
8,00	7,59	800	724		
9,00	8,54	900	815		
9,00	0,04	900	010		

Tabelle 3

	R _{ISO}	MΩ	
Grenzwert	Min.	Grenzwert	Min.
	Anzeigewert		Anzeigewert
0,10	0,12	10,0	10,7
0,15	0,17	15,0	15,9
0,20	0,23	20,0	21,2
0,25	0,28	25,0	26,5
0,30	0,33	30,0	31,7
0,35	0,38	35,0	37,0
0,40	0,44	40,0	42,3
0,45	0,49	45,0	47,5
0,50	0,54	50,0	52,8
0,55	0,59	60,0	63,3
0,60	0,65	70,0	73,8
0,70	0,75	80,0	84,4
0,80	0,86	90,0	94,9
0,90	0,96	100	106
1,00	1,07	150	158
1,50	1,59	200	211
2,00	2,12	250	264
2,50	2,65	300	316
3,00	3,17		
3,50	3,70		
4,00	4,23		
4,50	4,75		
5,00	5,28		
6,00	6,33		
7,00	7,38		
8,00	8,44		
9,00	9,49		

Tabelle 4

	R _{LC}	Ω	
Grenzwert	Max.	Grenzwert	Max.
	Anzeigewert		Anzeigewert
0,10	0,07	10,0	9,59
0,15	0,12	15,0	14,4
0,20	0,17	20,0	19,2
0,25	0,22	25,0	24,0
0,30	0,26	30,0	28,8
0,35	0,31	35,0	33,6
0,40	0,36	40,0	38,4
0,45	0,41	45,0	43,2
0,50	0,46	50,0	48,0
0,60	0,55	60,0	57,6
0,70	0,65	70,0	67,2
0,80	0,75	80,0	76,9
0,90	0,84	90,0	86,5
1,00	0,94	99,9	96,0
1,50	1,42		
2,00	1,90		
2,50	2,38		
3,00	2,86		
3,50	3,34		
4,00	3,82		
4,50	4,30		
5,00	4,78		
6,00	5,75		
7,00	6,71		
8,00	7,67		
9,00	8,63		

$Z_{ST}k\Omega$						
Grenzwert	Min. Anzeigewert					
10	14					
15	19					
20	25					
25	30					
30	36					
35	42					
40	47					
45	53					
50	58					
56	65					
60	69					
70	80					
80	92					
90	103					
100	114					
150	169					
200	253					
250	315					
300	378					
350	440					
400	503					
450	565					
500	628					
600	753					
700	878					
800	>999					

Tabelle 6 Kurzschlussstrom-Mindestanzeigewerte zur Ermittlung der Nennströme verschiedener Sicherungen und Schalter für Netze mit Nennspannung $U_N=230\ V$

Nenn- strom I _N		iederspannun Normen der F					mit Leitung	sschutzschalt	er und Leistu	ingsschalter			
[A]	Charakteristik gL, gG, gM				Charakteristik B/E (früher L)		Charakteristik C (früher G, U)		Charakteristik D		Charakteristik K		
	Abschalts	trom I _A 5 s	Abschaltst	rom I _A 0,4 s		tstrom I _A),2 s/0,4 s)		tstrom I _A 0,2 s/0,4 s)		Abschaltstrom I _A 20 x I _N (< 0,2 s/0,4 s)		Abschaltstrom I_A 12 x I_N (< 0,1 s)	
	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	Grenzwert [A]	Min. Anzeige [A]	
2	9,2	10	16	17	10	11	20	21	40	42	24	25	
3	14,1	15	24	25	15	16	30	32	60	64	36	38	
4	19	20	32	34	20	21	40	42	80	85	48	51	
6	27	28	47	50	30	32	60	64	120	128	72	76	
8	37	39	65	69	40	42	80	85	160	172	96	102	
10	47	50	82	87	50	53	100	106	200	216	120	128	
13	56	59	98	104	65	69	130	139	260	297	156	167	
16	65	69	107	114	80	85	160	172	320	369	192	207	
20	85	90	145	155	100	106	200	216	400	467	240	273	
25	110	117	180	194	125	134	250	285	500	578	300	345	
32	150	161	265	303	160	172	320	369	640	750	384	447	
35	173	186	295	339	175	188	350	405	700	825	420	492	
40	190	205	310	357	200	216	400	467	800	953	480	553	
50	260	297	460	529	250	285	500	578	1000	1,22 k	600	700	
63	320	369	550	639	315	363	630	737	1260	1,58 k	756	896	
80	440	517									960	1,16 k	
100	580	675									1200	1,49 k	
125	750	889									1440	1,84 k	
160	930	1,12 k									1920	2,59 k	

Anzeigewert 90,4 A \to nächstkleinerer Wert für Leitungsschutzschalter Charakteristik B aus Tabelle: 85 A \to Nennstrom (I_N) des Schutzelementes maximal 16 A

21.2 Bei welchen Werten soll/muss ein RCD eigentlich richtig auslösen? Anforderungen an eine Fehlerstromschutzeinrichtung (RCD)

Allgemeine Anforderungen:

 Die Auslösung muss spätestens bei Fließen des Bemessungsfehlerstroms (Nenndifferenzstroms I_{AN}) erfolgen.

und

 Die maximale Zeit bis zur Auslösung darf nicht überschritten werden.

Erweiterte Anforderungen durch zu berücksichtigende Einflüsse auf den Auslösestrombereich und den Auslösezeitpunkt:

- Art bzw. Form des Fehlerstroms: hieraus ergibt sich ein zulässiger Auslösestrombereich
- Netzform und Netzspannung: hieraus ergibt sich eine maximale Auslösezeit
- Ausführung des RCDs (standard oder selektiv): hieraus ergibt sich eine maximale Auslösezeit

Definitionen der Anforderungen in den Normen

Für Messungen in elektrischen Anlagen gilt die **VDE 0100-600**, die in jedem **Elektroinstallateur**-Auswahlordner zu finden ist. Diese besagt eindeutig: "Die Wirksamkeit der Schutzmaßnahme ist nachgewiesen, wenn die Abschaltung spätestens beim Bemessungsdifferenzstrom $I_{\rm AN}$ erfolgt."

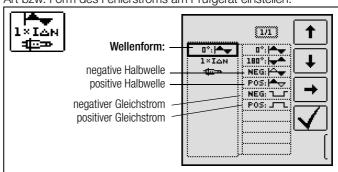
Auch die DIN EN 61557-6 (VDE 0413-6), als die Vorgabe für den Messgerätehersteller, sagt dazu unmissverständlich:

"Mit dem Messgerät muss nachweisbar sein, dass der Auslösefehlerstrom der Fehlerstrom-Schutzeinrichtung (RCD) kleiner oder gleich dem Bemessungsfehlerstrom ist."

Kommentar

Das bedeutet für jeden Elektro-Installateur bei den fälligen Schutzmaßnahmen-Prüfungen nach Anlagenänderungen oder Anlagenergänzungen, nach Reparaturen oder beim E-CHECK nach der Berührungsspannungsmessung, dass der Auslösetest je nach RCD spätestens beim Erreichen von 10 mA, 30 mA, 100 mA, 300 mA bzw. 500 mA erfolgt sein muss.

Wie reagiert der Elektro-Installateur, wenn diese Werte überschritten werden? Der RCD fliegt raus!


Wenn er relativ neu war, wird er beim Hersteller reklamiert. Und der stellt in seinem Labor fest: der RCD entspricht der Herstellernorm und ist in Ordnung.

Ein Blick in die Herstellernorm VDE 0664-10/-20/-100/-200 zeigt warum:

Art des Fehlerstroms	Form des Fehlerstroms	Zulässiger Auslösestrombereich
Sinusförmiger Wechselstrom	~	0,5 1 Ι _{ΔΝ}
Pulsierender Gleichstrom (positive oder negative Halbwellen)	₩	0,35 1,4 I _{ΔN}
Phasenwinkelgesteuerte Halbwellenströme Phasenwinkel von 90° el Phasenwinkel von 135° el	₩	0,25 1,4 I _{ΔN} 0,11 1,4 I _{ΔN}
Pulsierender Gleichstrom überlagert mit glattem Gleichfehlerstrom von 6 mA	<u>~</u>	max. 1,4 I _{ΔN} + 6 mA
Glatter Gleichstrom	===	0,5 2 I _{ΔN}

Da die Stromform eine bedeutende Rolle spielt, ist es wichtig zu wissen, welche Stromform das eigene Prüfgerät nutzt.

Art bzw. Form des Fehlerstroms am Prüfgerät einstellen:

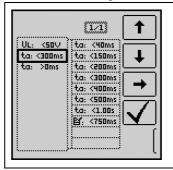
Es ist wichtig, bei seinem Prüfgerät die entsprechende Einstellung vorzunehmen und zu nutzen.

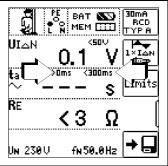
Ähnlich verhält es sich mit den Abschaltzeiten. Die neue **VDE 0100-410**, müsste auch im Auswahlordner vorhanden sein. Sie gibt Abschaltzeiten, je nach Netzform und Netzspannung, zwischen 0,1 s und 5 s an.

ſ	System						$J_0 \le 400 \text{ V}$	U ₀ >	400 V
ı	System	AC	DC	AC	DC	AC	DC	AC	DC
ı	TN	0,8 s		0,4 s	5 s	0,2 s	0,4 s	0,1 s	0,1 s
ı	TT	0,3 s		0,2 s	0,4 s	0,07 s	0,2 s	0,04 s	0,1 s

Normalerweise schalten RCDs schneller ab, aber ... es kann ja passieren, dass ein RCD einmal etwas länger braucht. Und dann ist wieder der Hersteller gefragt.

Bei einem erneuten Blick in die VDE 0664 entdeckt man die folgende Tabelle:


Ausführung	Fehler- stromart	Abschaltzeiten bei			
	Wechselfehler- ströme	1 x l _{ΔN}	2 x I _{ΔN}	5 x l _{ΔN}	500 A
	pulsierende Gleichfehler- ströme	1,4 x Ι _{ΔΝ}	2 x 1,4 x I _{ΔN}	5 x 1,4 x Ι _{ΔΝ}	500 A
	glatte Gleich- fehlerströme	2 x l _{ΔN}	2 x 2 x I _{ΔN}	5 x 2 x I _{ΔN}	500 A
Standard (un- verzögert) bzw. kurzzeit- verzögert		300 ms	max. 0,15 s	max. 0,04 s	max. 0,04 s
selektiv		0,13 0,5 s	0,06 0,2 s	0,05 0,15 s	0,04 0,15 s


Hier stechen zwei Grenzwerte ins Auge:

Standard max. 0,3 s Selektiv max. 0,5 s

Ein richtiges Prüfgerät hat alle Grenzwerte vorbereitet bzw. ermöglicht die direkte Eingabe gewünschter Werte und zeigt diese auch an!

Grenzwerte am Prüfgerät auswählen oder einstellen:

Prüfungen elektrischer Anlagen bestehen aus "Besichtigen", "Erproben" und "Messen" und sind deshalb Fachleuten mit entsprechender Berufserfahrung vorbehalten.

Technisch sind im Endeffekt zunächst die Werte aus der VDE 0664 verbindlich.

21.3 Prüfen von elektrischen Maschinen nach DIN EN 60204 – Anwendungen, Grenzwerte

Für die Prüfungen von elektrischen Maschinen und Steuerungen wurde das Prüfgerät **PROFITEST 204+** entwickelt. Nach der Normänderung in 2007 ist zusätzlich die Messung der Schleifenimpedanz erforderlich. Die Messung des Schleifenwiderstands sowie weitere erforderliche Messungen für Prüfungen von elektrischen Maschinen können Sie auch mit den Prüfgeräten der Serie **PROFITEST MASTER** durchführen.

Vergleich der vorgeschriebenen Prüfungen zwischen den Normen

Prüfung nach DIN EN 60204-1 (Maschinen)	Prüfung nach DIN EN 61557 (Anlagen)	Mess- funktion
Durchgehende Verbindung des Schutzleitersystems	Teil 4: Widerstand von: — Erdungsleiter — Schutzleiter — Potenzialausgleichsleiter	RLO
Schleifenimpedanz	Teil 3: Schleifenimpedanz	ZL-PE
Isolationswiderstand	Teil 2: Isolationswiderstand	RIS0
Spannungsprüfung (Prüfung der Spannungsfestigkeit)	_	_
Spannungsmessung (Schutz gegen Restspannung)	Teil 10: Kombinierte Messgeräte (u. a. zur Spannungsmessung) zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen	U
Funktionsprüfung	_	_

Durchgehende Verbindung des Schutzleitersystems

Hier wird die durchgehende Verbindung eines Schutzleitersystems durch Einspeisen eines Wechselstroms zwischen 0,20 A und 10 A bei einer Netzfrequenz von 50 Hz überprüft (= Niederohmmessung). Die Prüfung muss zwischen der PE-Klemme und verschiedenen Punkten des Schutzleitersystems durchgeführt werden.

Schleifenimpedanzmessung

Die Schleifenimpedanz Z_{L-PE} wird gemessen und der Kurzschlussstrom I_K wird ermittelt, um zu prüfen, ob die Abschaltbedingungen der Schutzeinrichtungen eingehalten werden, siehe Kap. 8.

Isolationswiderstandsmessung

Hierbei werden bei der Maschine alle aktiven Leiter der Hauptstromkreise (L und N bzw. L1, L2, L3 und N) kurzgeschlossen und gegen PE (Schutzleiter) gemessen. Steuerungen, oder Teile der Maschine, die für diese Spannungen (500 V DC) nicht ausgelegt sind, dürfen für die Dauer der Messung vom Messkreis getrennt werden. Der Messwert darf nicht kleiner als 1 MOhm sein. Die Prüfung darf in einzelne Abschnitte aufgeteilt werden.

Spannungsprüfungen (nur mit PROFITEST 204HP/HV)

Die elektrische Ausrüstung einer Maschine muss zwischen den Leitern aller Stromkreise und dem Schutzleitersystem mindestens 1 s lang einer Prüfspannung standhalten, die das 2-fache der Bemessungsspannung der Ausrüstung oder 1000 V~ beträgt, je nachdem, welcher Wert der jeweils Größere ist. Die Prüfspannung muss eine Frequenz von 50 Hz haben und von einem Transformator mit einer Mindest-Bemessungsleistung von 500 VA erzeugt werden.

Spannungsmessungen

Die Vorschrift EN 60204 fordert, dass an jedem berührbaren aktiven Teil einer Maschine, an welchem während des Betriebs eine Spannung von mehr als 60 V anliegt, nach dem Abschalten der Versorgungsspannung die Restspannung innerhalb von 5 s auf einen Wert von 60 V oder weniger abgesunken sein muss.

Funktionsprüfung

Die Maschine wird mit Nennspannung betrieben und auf Funktion, insbesondere auf Sicherheitsfunktionen geprüft.

Spezielle Prüfungen

- Puls-Brennbetrieb zur Fehlersuche (nur mit PROFITEST 204HP/HV)
- Schutzleiterprüfung mit 10 A-Prüfstrom (nur mit PROFITEST 204+)

Grenzwerte nach DIN EN 60204-1

Messung	Parameter	Querschnitt	Normwert
	Prüfdauer		10 s
Schutzleiter- messung	Grenzwert Schutzleiterwiderstand gemäß Leitungsquer- schnitt (Außenleiter L) und Charakteristik der Über- stromschutzeinrichtung (berechneter Wert)	1,5 mm² 2,5 mm² 4,0 mm² 6,0 mm² 10 mm² 16 mm² 25 mm² L (16 mm² PE) 35 mm² L (25 mm² PE) 70 mm² L (35 mm² PE) 95 mm² L (50 mm² PE) 120 mm² L (70 mm² PE)	$500 \text{ m}\Omega$ $500 \text{ m}\Omega$ $500 \text{ m}\Omega$ $500 \text{ m}\Omega$ $400 \text{ m}\Omega$ $300 \text{ m}\Omega$ $200 \text{ m}\Omega$ $100 \text{ m}\Omega$
Isolationswiderstan	Nennspannung		500 V DC
dsmessung	Widerstandsgrenzwert		≥1 MΩ
Ableitstrommes- sung	Ableitstrom		2,0 mA
Spannungsmes- sung	Entladezeit		5 s
	Prüfdauer		1 s
Spannungsprüfung	Prüfspannung		≥ 1 kV oder 2 U _N

Charakteristik der Überstromschutzeinrichtungen zur Grenzwertauswahl bei Schutzleiterprüfung

Abschaltzeiten, Charakteristika	Verfügbar bei Querschnitt
Sicherung Abschaltzeit 5 s	alle Querschnitte
Sicherung Abschaltzeit 0,4 s	1,5 mm ² bis einschl. 16 mm ²
Leitungsschutzschalter Charakteristik B la = 5x ln - Abschaltzeit 0,1s	1,5 mm² bis einschl. 16 mm²
Leitungsschutzschalter Charakteristik C la = 10x ln - Abschaltzeit 0,1s	1,5 mm² bis einschl. 16 mm²
Einstellbarer Leistungsschalter la = 8 x ln - Abschaltzeit 0,1s	alle Querschnitte

21.4 Wiederholungsprüfungen nach DGUV V 3 (bisher BGV A3) - Grenzwerte für elektrische Anlagen und Betriebsmittel

Grenzwerte nach DIN VDE 0701-0702

Maximal zulässige Grenzwerte des Schutzleiterwiderstands bei Anschlussleitungen bis 5 m Länge

Prüfnorm	Prüfstrom	Leerlauf- spannung	R _{SL} Gehäuse – Netzstecker
VDE 0701-0702:2008	> 200 mA	4 V < U _L < 24 V	$0,3~\Omega^{-1)}$ + 0,1 $\Omega^{-2)}$ je weitere 7,5 m

 $^{^{1)}}$ Für Festanschluss bei Datenverarbeitungsanlagen darf dieser Wert maximal 1 Ω sein (DIN VDE 0701-0702). 2) Gesamter Schutzleiterwiderstand maximal 1 Ω

Minimal zulässige Grenzwerte des Isolationswiderstands

Duites	Prüf-	R _{ISO}			R _I		
Prüfnorm	spannung	SK I	SK II	SK III	Heizung		
VDE 0701- 0702:2008	500 V	1 ΜΩ	$2\mathrm{M}\Omega$	$0,25~\mathrm{M}\Omega$	0,3 MΩ *		

mit eingeschalteten Heizelementen (wenn Heizleistung > 3.5 kW und $R_{\rm ISO} < 0.3$ MΩ: Ableitstrommessung erforderlich)

Maximal zulässige Grenzwerte der Ableitströme in mA

Prüfnorm	I _{SL}	I _B	I _{DI}
VDE 0701-0702:2008	SK I: 3,5 1 mA/kW *	0,5	SK I: 3,5 1 mA/kW * SK II: 0,5

bei Geräten mit einer Heizleistung > 3,5 kW

Anmerkung 1: Geräte, die nicht mit schutzleiterverbundenen berührbaren Teilen

ausgestattet sind und die mit den Anforderungen für den Gehäuseableitstrom und, falls zutreffend, für den Patientenableitstrom übereinstimmen, z. B. EDV-Geräte mit abgeschirmtem Netzteil

Anmerkung 2: Fest angeschlossene Geräte mit Schutzleiter

Anmerkung 3: Fahrbare Röntgengeräte und Geräte mit mineralischer Isolierung

Legende zur Tabelle

Gehäuse-Ableitstrom (Sonden- oder Berührungsstrom)

 $I_{\mbox{\scriptsize DI}}$ Differenzstrom

I_{SL} Schutzleiterstrom

Maximal zulässige Grenzwerte der Ersatz-Ableitströme in mA

Prüfnorm	I _{EA}	
VDE 0701-0702:2008	SK I: 3,5 1 mA/kW ¹⁾ SK II: 0,5	

¹⁾ bei Geräten mit einer Heizleistung ≥ 3,5 kW

21.5 Liste der Kurzbezeichnungen und deren Bedeutung

RCD-Schalter (Fehlerstrom-Schutzeinrichtung)

 I_{Δ} Auslösestrom

 $I_{\Delta N}$ Nennfehlerstrom

I_F Ansteigender Prüfstrom (Fehlerstrom)

PRCD Portable (ortsveränderlicher) RCD

PRCD-S:

mit Schutzleitererkennung bzw. Schutzleiterüberwachung PRCD-K:

mit Unterspannungsauslösung und Schutzleiterüberwachung

RCD-S Selektiver RCD-Schutzschalter

R_E Errechneter Erdungs- bzw. Erderschleifenwiderstand

SRCD Socket (fest installierter) RCD

t_a Auslösezeit / Abschaltzeit

 $U_{|\Delta}$ Berührungsspannung im Augenblick des Auslösens

U_{IAN} Berührungsspannung

bezogen auf den Nennfehlerstrom ${\rm I}_{\Delta N}$ ${\rm U}_{\rm L}$ Grenzwert für die Berührungsspannung

Überstromschutzeinrichtung

I_K Errechneter Kurzschlussstrom (bei Nennspannung)

Z_{L-N} Netzimpedanz

Z_{L-PE} Schleifenimpedanz

Erdung

R_B Widerstand der Betriebserde

R_E Gemessener Erdungswiderstand

R_{ESchl} Erder-Schleifenwiderstand

Niederohmiger Widerstand von Schutz-, Erdungs- und Potenzialausgleichsleitern

R_{I O+} Widerstand von Potenzialausgleichsleitern (+ Pol an PE)

R_{LO-} Widerstand von Potenzialausgleichsleitern (- Pol an PE)

Isolation

R_{E(ISO)} Erdableitwiderstand (DIN 51953)

R_{ISO} Isolationswiderstand

R_{ST} StandortisolationswiderstandZ_{ST} Standortisolationsimpedanz

Strom

I_A Abschaltstrom

I_L Ableitstrom (Messung mit Zangenstromwandler)

 $I_{\mathbf{M}}$ Messstrom $I_{\mathbf{N}}$ Nennstrom

I_P Prüfstrom

Spannung

f Frequenz der Netzspannung

f_N Nennfrequenz der Nennspannung

ΔU Spannungsfall in %

U an den Prüfspitzen gemessene Spannung während und

nach der Isolationsmessung von $R_{\rm ISO}$

U_{Batt} Akkuspannung (Batteriespannung)

U_E Erderspannung

U_{ISO} Bei Messung von R_{ISO}: Prüspannung, bei Rampenfunk-

tion: Ansprech- oder Durchbruchspannung

 U_{L-L} Spannung zwischen zwei Außenleitern

U_{L-N} Spannung zwischen L und N

U_{L-PE} Spannung zwischen L und PE

U_N Netz-Nennspannung

 $\rm U_{3-}$ höchste gemessene Spannung bei Bestimmung

der Drehfeldrichtung

 U_{S-PE} Spannung zwischen Sonde und PE

Uy Leiterspannung gegen Erde

21.6 Stichwortverzeichnis

A Ableitstrommessadapter PRO-AB
Akkus
einsetzen
Automatische Prüfabläufe 64
В
Berührungsspannung
Bluetooth-aktiv-Anzeige
D
Datensicherung
Differenzstrom-Überwachungsgeräte
Drehfeldrichtung
E Einschaltdauer
LCD-Beleuchtung10
Prüfgerät
E-Ladesäulen
Erdableitwiderstand46
Erder-Schleifenwiderstand
Erdschlussanzeigeeinrichtungen
Erdungswiderstandsmessung Übersicht
F
Firmwarestand und Kalibrierinfo12
Firmware-Update
G Garantiesiegel6
Grenzwerte
nach DIN EN 60 204 Teil 1
nach DIN VDE 0701-0702 92 G-Schalter 24
Н
Helligkeit und Kontrast einstellen
IMDs56
Intelligente Rampe59
Internetadressen 95
Isolationsüberwachungsgeräte
Kurzbezeichnungen93
Kurzschlussstrom-Berechnung
L Literaturliste
M
MASTER Updater12
N Naturiaria salidar (TN TT IT)
Netzform wählen (TN, TT, IT)
Nicht-Auslöseprüfung21
Norm DIN EN 50178 (VDE 160)21
DIN EN 60 204
DIN VDE 010026, 32
DIN VDE 0100-410
EN 108146
IEC 61851
ÖVE/ÖNORM E 860124
ÖVE-EN 15

VDE 041318, 26, 3	30
P Parameterverriegelung	1/
Plausibilitätsprüfung	
Polwechsel	
PRCD	I
Auslöseprüfung Typ PRCD-K	20
Auslöseprüfung Typ PRCD-S	
Protokollierung von Fehlersimulationen an PRCDs mit de	
Adapter PROFITEST PRCD	
Profile für Verteilerstrukturen (PROFILES)	
Prüfbox von MENNEKES	
Prüfen	0 1
nach BGV A3	ar.
von elektrischen Maschinen	
Prüfsequenzen	
Truisequerizeri	<u> </u>
R	
RCD-S	
RCMs	
Restspannungsprüfung	58
\$	
Schnittstellen	
Bluetooth konfigurieren	
USB, RS232 Anschlüsse	
SCHUKOMAT2	23
Sicherung	
auswechseln	87
SIDOS	
Spannungsfall in % (Funktion ZL-N)	
Spannungsfall-Messung	52
Speicher	
Belegungsanzeige	
Sprache der Bedienerführung (CULTURE)	
SRCD	
Standortisolationsimpedanz	
Symbole	. 6
U	
Übersicht der Sonderfunktionen	51
V	
Verkettete Spannungen	17
Verkettete Sparriurigeri	1 /
W	
Werkseinstellungen (GOME SETTING)	10
Z	
Zähleranlaufprüfung	54
Zangenstromsensor	
Messbereiche	50

21.7 Literaturliste

Rechtsgrundlagen				
Betriebs Sicherheits Verordnung (BetrSichV) Vorschriften der Unfallversicherungsträger UVVs				
Titel Information Herausgeber Auflage/ Regel / Vorschrift Bestell-N				
Betriebs Sicherheits Verordnung (BetrSichV)	BetrSichV			
Elektrische Anlagen und Betriebsmittel	DGUV Vorschrit 3 (bisher BGV A3)	DGUV (bisher HVBG)	2005	

VDE-Normen	VDE-NOTHIER				
Deutsche Norm	Titel	Ausgabe Datum	Verlag		
DIN VDE 0100-410	Schutz gegen elektrischen Schlag	2007-06	Beuth-Verlag GmbH		
DIN VDE 0100-530	Errichten von Niederspan- nungsanlagen Teil 530: Auswahl und Er- richtung elektrischer Be- triebsmittel-, Schalt- und Steuergeräte	2011-06	Beuth-Verlag GmbH		
DIN VDE 0100-600	Errichten von Niederspan- nungsanlagen Teil 6: Prüfungen	2008-06	Beuth-Verlag GmbH		
Normenreihe DIN EN 61557	Geräte zum Prüfen, Messen oder Überwachen von Schutzmaßnahmen	2006-08	Beuth-Verlag GmbH		
DIN VDE 0105-100	Betrieb von elektrischen An- lagen, Teil 100: Allgemeine Festlegungen	2009-10	Beuth-Verlag GmbH		
VDE 0122-1 DIN EN 61851-1	Elektrische Ausrüstung von Elektro-Straßenfahrzeugen - Konduktive Ladesysteme für Elektrofahrzeuge – Teil 1: Allgemeine Anforderungen	2013-04	Beuth-Verlag GmbH		

Titel	Autoren	Verlage	Auflage/ Bestell-Nr.
Prüfung ortsfester und ortsveränderlicher Geräte	Bödeker, W. Lochthofen, M.	HUSS-MEDIEN GmbH Berlin www.elektropraktiker.de	8. Auflage 2014 ISBN 978-3- 341-01614-5
Wiederholungsprüfun- gen nach DIN VDE 105	Bödeker, K.; Lochthofen, M.; Roholf, K.	Hüthig & Pflaum Verlag www.vde-verlag.de	3. Auflage 2014 VDE-Bestell-Nr. 310589
Prüfungen vor Inbetrieb- nahme von Niederspan- nungsanlagen DIN VDE 0100-600	Kammler, M.	VDE Verlag GmbH www.vde-verlag.de	VDE-Schriften- reihe Band 63 4. Auflage 2012
Schutz gegen elektr. Schlag DIN VDE 0100-410	Hörmann, W. Schröder, B.	VDE Verlag GmbH www.vde-verlag.de	VDE-Schriften- reihe Band 140 4. Auflage 2010
VDE-Prüfung nach BetrSichV, TRBS und BGV A3	Henning, W.	Beuth-Verlag GmbH www.beuth.de	VDE-Schriften- reihe 43 Auflage 2012
Merkbuch für den Elektrofachmann	GMC-I Messtech- nik GmbH	www.gossenmetra- watt.com	Bestell-Nr. 3-337-038-01
de Jahrbuch 2014 Elektrotechnik für Hand- werk und Industrie	Behrends, P.; Bonhagen, S.	Hüthig & Pflaum Verlag München/Heidelberg www.elektro.net	ISBN 978-3- 8101-0350-5
Elektroinstallation für die gesamte Ausbildung	Hübscher, Jagla, Klaue, Wickert	Westermann Schul- buchverlag GmbH www.westermann.de	ISBN 978-3-14 221630-0 3. Auflage 2009
Praxis Elektrotechnik	Bastian, Feustel, Käppel, Schuberth, Tkotz, Ziegler	Europa-Lehrmittel www.europa-lehrmit- tel.de	ISBN 978-3- 8085-3134-1 12. Auflage 201
Fachkunde Elektrotechnik		Europa-Lehrmittel www.europa-lehrmit- tel.de	ISBN 978-3- 8085-3190-7 29. Auflage 201

21.7.1 Internetadressen für weiterführende Informationen

Internetadresse		
www.dguv.de	DGUV-Informationen, -Regeln und -Vorschriften durch die Deutsche Gesetzliche Unfallversicherung e.V.	
www.beuth.de	VDE-Bestimmungen, DIN-Normen, VDI-Richtlinien durch den Beuth-Verlag GmbH	
www.bgetem.de	BG-Informationen, -Regeln und -Vorschriften durch die gewerblichen Berufsgenossenschaften z.B. BG ETEM (Berufsgenossenschaft der Energie Textil Elektro Medienerzeugnisse)	

22 Reparatur- und Ersatzteil-Service Kalibrierzentrum* und Mietgeräteservice

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Service GmbH
Service-Center
Thomas-Mann-Straße 16 - 20
90471 Nürnberg • Germany
Telefon +49 911 817718-0
Telefax +49 911 817718-253
E-Mail service@gossenmetrawatt.com
www.gmci-service.com

Diese Anschrift gilt nur für Deutschland. Im Ausland stehen unsere jeweiligen Vertretungen oder Niederlassungen zur Verfügung.

 DAkkS-Kalibrierlaboratorium für elektrische Messgrößen D-K-15080-01-01 akkreditiert nach DIN EN ISO/IEC 17025

Akkreditierte Messgrößen: Gleichspannung, Gleichstromstärke, Gleichstrom-widerstand, Wechselspannung, Wechselstromstärke, Wechselstrom-Wirkleistung, Wechselstrom-Scheinleistung, Gleichstromleistung, Kapazität, Frequenz und Temperatur

Kompetenter Partner

Die GMC-I Messtechnik GmbH ist zertifiziert nach DIN EN ISO 9001.

Unser DAkkS-Kalibrierlabor ist nach DIN EN ISO/IEC 17025 bei der Deutschen Akkreditierungsstelle GmbH unter der Nummer D-K-15080-01-01 akkreditiert.

Vom **Prüfprotokoll** über den **Werks-Kalibrierschein** bis hin zum **DAkkS-Kalibrierschein** reicht unsere messtechnische Kompetenz. Ein kostenloses **Prüfmittelmanagement** rundet unsere Angehots-

Ein kostenloses **Prüfmittelmanagement** rundet unsere Angebotspalette ab.

Ein Vor-Ort-DAkkS-Kalibrierplatz ist Bestandteil unserer Service-Abteilung. Sollten bei der Kalibrierung Fehler erkannt werden, kann unser Fachpersonal Reparaturen mit Original-Ersatzteilen durchführen.

Als Kalibrierlabor kalibrieren wir natürlich herstellerunabhängig.

Servicedienste

- Hol- und Bringdienst
- Express-Dienste (sofort, 24h, weekend)
- Inbetriebnahme und Abrufdienst
- Geräte- bzw. Software-Updates auf aktuelle Normen
- Ersatzteile und Instandsetzung
- Helpdesk
- DAkkS-Kalibrierlabor nach DIN EN ISO/IEC 17025
- Serviceverträge und Prüfmittelmanagement
- Mietgeräteservice
- Altgeräte-Rücknahme

23 Rekalibrierung

Die Messaufgabe und Beanspruchung Ihres Messgeräts beeinflussen die Alterung der Bauelemente und kann zu Abweichungen von der zugesicherten Genauigkeit führen.

Bei hohen Anforderungen an die Messgenauigkeit sowie im Baustelleneinsatz mit häufiger Transportbeanspruchung und großen Temperaturschwankungen, empfehlen wir ein relativ kurzes Kalibrierintervall von 1 Jahr. Wird Ihr Messgerät überwiegend im Laborbetrieb und Innenräumen ohne stärkere klimatische oder mechanische Beanspruchungen eingesetzt, dann reicht in der Regel ein Kalibrierintervall von 2-3 Jahren.

Bei der Rekalibrierung* in einem akkreditierten Kalibrierlabor (DIN EN ISO/IEC 17025) werden die Abweichungen Ihres Messgeräts zu rückführbaren Normalen gemessen und dokumentiert. Die ermittelten Abweichungen dienen Ihnen bei der anschließenden Anwendung zur Korrektur der abgelesenen Werte.

Gerne erstellen wir für Sie in unserem Kalibrierlabor DAkkS- oder Werkskalibrierungen. Weitere Informationen hierzu finden Sie auf unserer Homepage unter:

www.gossenmetrawatt.com (\rightarrow Unternehmen \rightarrow DAkkS-Kalibrierzentrum oder \rightarrow FAQs \rightarrow Fragen und Antworten zur Kalibrierung).

Durch eine regelmäßige Rekalibrierung Ihres Messgerätes erfüllen Sie die Forderungen eines Qualitätsmanagementsystems nach DIN EN ISO 9001.

* Prüfung der Spezifikation oder Justierung sind nicht Bestandteil einer Kalibrierung. Bei Produkten aus unserem Hause wird jedoch häufig eine erforderliche Justierung durchgeführt und die Einhaltung der Spezifikation bestätigt.

24 Produktsupport

Bitte wenden Sie sich im Bedarfsfall an:

GMC-I Messtechnik GmbH Hotline Produktsupport Telefon D 0900 1 8602-00 A/CH +49 911 8602-0 Telefax +49 911 8602-709

E-Mail support@gossenmetrawatt.com

25 Schulung

Wir empfehlen eine Schulung der Anwender, da eine umfassende Nutzerinformation wegen der Komplexität und der vielfältigen Anwendungsmöglichkeiten des Prüfgeräts nicht allein durch das Lesen der Bedienungsanleitungen gewährleistet werden kann.

Seminare mit Praktikum finden Sie auf unserer Homepage:

http://www.gossenmetrawatt.com

🚄 Schulungen in Nürnberg

GMC-I Messtechnik GmbH Bereich Schulung

Telefon +49 911 8602-935 Telefax +49 911 8602-724

E-Mail training@gossenmetrawatt.com

Erstellt in Deutschland • Änderungen vorbehalten • Eine PDF-Version finden Sie im Internet

